File size: 19,940 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""Transforms relate to tokenization/subword."""
from onmt.utils.logging import logger
from onmt.transforms import register_transform
from .transform import Transform, ObservableStats


class TokenizerTransform(Transform):
    """Tokenizer transform abstract class."""

    def __init__(self, opts):
        """Initialize necessary options for Tokenizer."""
        super().__init__(opts)

    @classmethod
    def add_options(cls, parser):
        """Available options relate to Subword."""
        # Sharing options among `TokenizerTransform`s, same name conflict in
        # this scope will be resolved by remove previous occurrence in parser
        group = parser.add_argument_group(
            'Transform/Subword/Common', conflict_handler='resolve',
            description=".. Attention:: Common options shared by all subword transforms. "  # noqa: E501
            "Including options for indicate subword model path, "
            "`Subword Regularization <https://arxiv.org/abs/1804.10959>`_"
            "/`BPE-Dropout <https://arxiv.org/abs/1910.13267>`_, "
            "and `Vocabulary Restriction <https://github.com/rsennrich/subword-nmt#best-practice-advice-for-byte-pair-encoding-in-nmt>`__.")  # noqa: E501
        group.add('-src_subword_model', '--src_subword_model',
                  help="Path of subword model for src (or shared).")
        group.add("-tgt_subword_model", "--tgt_subword_model",
                  help="Path of subword model for tgt.")

        # subword regularization(or BPE dropout) options:
        group.add('-src_subword_nbest', '--src_subword_nbest',
                  type=int, default=1,
                  help="Number of candidates in subword regularization. "
                       "Valid for unigram sampling, "
                       "invalid for BPE-dropout. "
                       "(source side)")
        group.add('-tgt_subword_nbest', '--tgt_subword_nbest',
                  type=int, default=1,
                  help="Number of candidates in subword regularization. "
                       "Valid for unigram sampling, "
                       "invalid for BPE-dropout. "
                       "(target side)")
        group.add('-src_subword_alpha', '--src_subword_alpha',
                  type=float, default=0,
                  help="Smoothing parameter for sentencepiece unigram "
                       "sampling, and dropout probability for BPE-dropout. "
                       "(source side)")
        group.add('-tgt_subword_alpha', '--tgt_subword_alpha',
                  type=float, default=0,
                  help="Smoothing parameter for sentencepiece unigram "
                       "sampling, and dropout probability for BPE-dropout. "
                       "(target side)")

        # subword vocabulary restriction options:
        group.add('-src_subword_vocab', '--src_subword_vocab',
                  type=str, default="",
                  help="Path to the vocabulary file for src subword. "
                  "Format: <word>\t<count> per line.")
        group.add("-tgt_subword_vocab", "--tgt_subword_vocab",
                  type=str, default="",
                  help="Path to the vocabulary file for tgt subword. "
                  "Format: <word>\t<count> per line.")
        group.add('-src_vocab_threshold', '--src_vocab_threshold',
                  type=int, default=0,
                  help="Only produce src subword in src_subword_vocab with "
                  " frequency >= src_vocab_threshold.")
        group.add("-tgt_vocab_threshold", "--tgt_vocab_threshold",
                  type=int, default=0,
                  help="Only produce tgt subword in tgt_subword_vocab with "
                  " frequency >= tgt_vocab_threshold.")

    @classmethod
    def _validate_options(cls, opts):
        """Extra checks for Subword options."""
        assert 0 <= opts.src_subword_alpha <= 1, \
            "src_subword_alpha should be in the range [0, 1]"
        assert 0 <= opts.tgt_subword_alpha <= 1, \
            "tgt_subword_alpha should be in the range [0, 1]"

    def _parse_opts(self):
        self.share_vocab = self.opts.share_vocab
        self.src_subword_model = self.opts.src_subword_model
        self.tgt_subword_model = self.opts.tgt_subword_model
        self.src_subword_nbest = self.opts.src_subword_nbest
        self.tgt_subword_nbest = self.opts.tgt_subword_nbest
        self.src_subword_alpha = self.opts.src_subword_alpha
        self.tgt_subword_alpha = self.opts.tgt_subword_alpha
        self.src_subword_vocab = self.opts.src_subword_vocab
        self.tgt_subword_vocab = self.opts.tgt_subword_vocab
        self.src_vocab_threshold = self.opts.src_vocab_threshold
        self.tgt_vocab_threshold = self.opts.tgt_vocab_threshold

    def _repr_args(self):
        """Return str represent key arguments for TokenizerTransform."""
        kwargs = {
            'share_vocab': self.share_vocab,
            'src_subword_model': self.src_subword_model,
            'tgt_subword_model': self.tgt_subword_model,
            'src_subword_alpha': self.src_subword_alpha,
            'tgt_subword_alpha': self.tgt_subword_alpha,
            'src_subword_vocab': self.src_subword_vocab,
            'tgt_subword_vocab': self.tgt_subword_vocab,
            'src_vocab_threshold': self.src_vocab_threshold,
            'tgt_vocab_threshold': self.tgt_vocab_threshold
        }
        return ', '.join([f'{kw}={arg}' for kw, arg in kwargs.items()])


class SubwordStats(ObservableStats):
    """Runing statistics for counting tokens before/after subword transform."""

    __slots__ = ["subwords", "words"]

    def __init__(self, subwords: int, words: int):
        self.subwords = subwords
        self.words = words

    def update(self, other: "SubwordStats"):
        self.subwords += other.subwords
        self.words += other.words

    def __str__(self) -> str:
        return "{}: {} -> {} tokens".format(
            self.name(), self.words, self.subwords
        )


@register_transform(name='sentencepiece')
class SentencePieceTransform(TokenizerTransform):
    """SentencePiece subword transform class."""

    def __init__(self, opts):
        """Initialize necessary options for sentencepiece."""
        super().__init__(opts)

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import sentencepiece as spm
        spm.set_random_generator_seed(seed)

    def warm_up(self, vocabs=None):
        """Load subword models."""
        super().warm_up(None)
        import sentencepiece as spm
        load_src_model = spm.SentencePieceProcessor()
        load_src_model.Load(self.src_subword_model)
        _diff_vocab = self.src_subword_vocab != self.tgt_subword_vocab or \
            self.src_vocab_threshold != self.tgt_vocab_threshold
        if self.src_subword_vocab != "" and self.src_vocab_threshold > 0:
            load_src_model.LoadVocabulary(
                self.src_subword_vocab, self.src_vocab_threshold)
        if self.share_vocab and not _diff_vocab:
            self.load_models = {
                'src': load_src_model,
                'tgt': load_src_model
            }
        else:
            load_tgt_model = spm.SentencePieceProcessor()
            load_tgt_model.Load(self.tgt_subword_model)
            if self.tgt_subword_vocab != "" and self.tgt_vocab_threshold > 0:
                load_tgt_model.LoadVocabulary(
                    self.tgt_subword_vocab, self.tgt_vocab_threshold)
            self.load_models = {
                'src': load_src_model,
                'tgt': load_tgt_model
            }

    def _tokenize(self, tokens, side='src', is_train=False):
        """Do sentencepiece subword tokenize."""
        sp_model = self.load_models[side]
        sentence = ' '.join(tokens)
        nbest_size = self.tgt_subword_nbest if side == 'tgt' else \
            self.src_subword_nbest
        if is_train is False or nbest_size in [0, 1]:
            # derterministic subwording
            segmented = sp_model.encode(sentence, out_type=str)
        else:
            # subword sampling when nbest_size > 1 or -1
            # alpha should be 0.0 < alpha < 1.0
            alpha = self.tgt_subword_alpha if side == 'tgt' else \
                self.src_subword_alpha
            segmented = sp_model.encode(
                sentence, out_type=str, enable_sampling=True,
                alpha=alpha, nbest_size=nbest_size)
        return segmented

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply sentencepiece subword encode to src & tgt."""
        src_out = self._tokenize(example['src'], 'src', is_train)
        tgt_out = self._tokenize(example['tgt'], 'tgt', is_train)
        if stats is not None:
            n_words = len(example['src']) + len(example['tgt'])
            n_subwords = len(src_out) + len(tgt_out)
            stats.update(SubwordStats(n_subwords, n_words))
        example['src'], example['tgt'] = src_out, tgt_out
        return example

    def _repr_args(self):
        """Return str represent key arguments for class."""
        kwargs_str = super()._repr_args()
        additional_str = 'src_subword_nbest={}, tgt_subword_nbest={}'.format(
            self.src_subword_nbest, self.tgt_subword_nbest
        )
        return kwargs_str + ', ' + additional_str


@register_transform(name='bpe')
class BPETransform(TokenizerTransform):
    """subword_nmt: official BPE subword transform class."""

    def __init__(self, opts):
        """Initialize necessary options for subword_nmt."""
        super().__init__(opts)

    def _parse_opts(self):
        super()._parse_opts()
        self.dropout = {'src': self.src_subword_alpha,
                        'tgt': self.tgt_subword_alpha}

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import random
        random.seed(seed)

    def warm_up(self, vocabs=None):
        """Load subword models."""
        super().warm_up(None)
        from subword_nmt.apply_bpe import BPE, read_vocabulary
        # Load vocabulary file if provided and set threshold
        src_vocabulary, tgt_vocabulary = None, None
        if self.src_subword_vocab != "" and self.src_vocab_threshold > 0:
            with open(self.src_subword_vocab, encoding='utf-8') as _sv:
                src_vocabulary = read_vocabulary(_sv, self.src_vocab_threshold)
        if self.tgt_subword_vocab != "" and self.tgt_vocab_threshold > 0:
            with open(self.tgt_subword_vocab, encoding='utf-8') as _tv:
                tgt_vocabulary = read_vocabulary(_tv, self.tgt_vocab_threshold)
        # Load Subword Model
        with open(self.src_subword_model, encoding='utf-8') as src_codes:
            load_src_model = BPE(codes=src_codes, vocab=src_vocabulary)
        if self.share_vocab and (src_vocabulary == tgt_vocabulary):
            self.load_models = {
                'src': load_src_model,
                'tgt': load_src_model
            }
        else:
            with open(self.tgt_subword_model, encoding='utf-8') as tgt_codes:
                load_tgt_model = BPE(codes=tgt_codes, vocab=tgt_vocabulary)
            self.load_models = {
                'src': load_src_model,
                'tgt': load_tgt_model
            }

    def _tokenize(self, tokens, side='src', is_train=False):
        """Do bpe subword tokenize."""
        bpe_model = self.load_models[side]
        dropout = self.dropout[side] if is_train else 0.0
        segmented = bpe_model.segment_tokens(tokens, dropout=dropout)
        return segmented

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply bpe subword encode to src & tgt."""
        src_out = self._tokenize(example['src'], 'src', is_train)
        tgt_out = self._tokenize(example['tgt'], 'tgt', is_train)
        if stats is not None:
            n_words = len(example['src']) + len(example['tgt'])
            n_subwords = len(src_out) + len(tgt_out)
            stats.update(SubwordStats(n_subwords, n_words))
        example['src'], example['tgt'] = src_out, tgt_out
        return example


@register_transform(name='onmt_tokenize')
class ONMTTokenizerTransform(TokenizerTransform):
    """OpenNMT Tokenizer transform class."""

    def __init__(self, opts):
        """Initialize necessary options for OpenNMT Tokenizer."""
        super().__init__(opts)

    def _set_seed(self, seed):
        """set seed to ensure reproducibility."""
        import pyonmttok
        pyonmttok.set_random_seed(seed)

    @classmethod
    def add_options(cls, parser):
        """Available options relate to Subword."""
        super().add_options(parser)
        group = parser.add_argument_group('Transform/Subword/ONMTTOK')
        group.add('-src_subword_type', '--src_subword_type',
                  type=str, default='none',
                  choices=['none', 'sentencepiece', 'bpe'],
                  help="Type of subword model for src (or shared) "
                       "in pyonmttok.")
        group.add('-tgt_subword_type', '--tgt_subword_type',
                  type=str, default='none',
                  choices=['none', 'sentencepiece', 'bpe'],
                  help="Type of subword model for tgt in  pyonmttok.")
        group.add('-src_onmttok_kwargs', '--src_onmttok_kwargs', type=str,
                  default="{'mode': 'none'}",
                  help="Other pyonmttok options for src in dict string, "
                  "except subword related options listed earlier.")
        group.add('-tgt_onmttok_kwargs', '--tgt_onmttok_kwargs', type=str,
                  default="{'mode': 'none'}",
                  help="Other pyonmttok options for tgt in dict string, "
                  "except subword related options listed earlier.")

    @classmethod
    def _validate_options(cls, opts):
        """Extra checks for OpenNMT Tokenizer options."""
        super()._validate_options(opts)
        src_kwargs_dict = eval(opts.src_onmttok_kwargs)
        tgt_kwargs_dict = eval(opts.tgt_onmttok_kwargs)
        if not isinstance(src_kwargs_dict, dict):
            raise ValueError("-src_onmttok_kwargs isn't a dict valid string.")
        if not isinstance(tgt_kwargs_dict, dict):
            raise ValueError("-tgt_onmttok_kwargs isn't a dict valid string.")
        opts.src_onmttok_kwargs = src_kwargs_dict
        opts.tgt_onmttok_kwargs = tgt_kwargs_dict

    def _parse_opts(self):
        super()._parse_opts()
        self.src_subword_type = self.opts.src_subword_type
        self.tgt_subword_type = self.opts.tgt_subword_type
        logger.info("Parsed pyonmttok kwargs for src: {}".format(
            self.opts.src_onmttok_kwargs))
        logger.info("Parsed pyonmttok kwargs for tgt: {}".format(
            self.opts.tgt_onmttok_kwargs))
        self.src_other_kwargs = self.opts.src_onmttok_kwargs
        self.tgt_other_kwargs = self.opts.tgt_onmttok_kwargs

    @classmethod
    def get_specials(cls, opts):
        src_specials, tgt_specials = set(), set()
        if opts.src_onmttok_kwargs.get("case_markup", False):
            _case_specials = ['⦅mrk_case_modifier_C⦆',
                              '⦅mrk_begin_case_region_U⦆',
                              '⦅mrk_end_case_region_U⦆']
            src_specials.update(_case_specials)
        if opts.tgt_onmttok_kwargs.get("case_markup", False):
            _case_specials = ['⦅mrk_case_modifier_C⦆',
                              '⦅mrk_begin_case_region_U⦆',
                              '⦅mrk_end_case_region_U⦆']
            tgt_specials.update(_case_specials)
        return (set(), set())

    def _get_subword_kwargs(self, side='src'):
        """Return a dict containing kwargs relate to `side` subwords."""
        subword_type = self.tgt_subword_type if side == 'tgt' \
            else self.src_subword_type
        subword_model = self.tgt_subword_model if side == 'tgt' \
            else self.src_subword_model
        subword_nbest = self.tgt_subword_nbest if side == 'tgt' \
            else self.src_subword_nbest
        subword_alpha = self.tgt_subword_alpha if side == 'tgt' \
            else self.src_subword_alpha
        kwopts = dict()
        if subword_type == 'bpe':
            kwopts['bpe_model_path'] = subword_model
            kwopts['bpe_dropout'] = subword_alpha
        elif subword_type == 'sentencepiece':
            kwopts['sp_model_path'] = subword_model
            kwopts['sp_nbest_size'] = subword_nbest
            kwopts['sp_alpha'] = subword_alpha
        else:
            logger.warning('No subword method will be applied.')
        vocabulary_threshold = self.tgt_vocab_threshold if side == 'tgt' \
            else self.src_vocab_threshold
        vocabulary_path = self.tgt_subword_vocab if side == 'tgt' \
            else self.src_subword_vocab
        if vocabulary_threshold > 0 and vocabulary_path != "":
            kwopts['vocabulary_path'] = vocabulary_path
            kwopts['vocabulary_threshold'] = vocabulary_threshold
        return kwopts

    def warm_up(self, vocabs=None):
        """Initialize Tokenizer models."""
        super().warm_up(None)
        import pyonmttok
        src_subword_kwargs = self._get_subword_kwargs(side='src')
        src_tokenizer = pyonmttok.Tokenizer(
            **src_subword_kwargs, **self.src_other_kwargs
        )
        tgt_subword_kwargs = self._get_subword_kwargs(side='tgt')
        _diff_vocab = (
            src_subword_kwargs.get('vocabulary_path', '') !=
            tgt_subword_kwargs.get('vocabulary_path', '') or
            src_subword_kwargs.get('vocabulary_threshold', 0) !=
            tgt_subword_kwargs.get('vocabulary_threshold', 0))
        if self.share_vocab and not _diff_vocab:
            self.load_models = {
                'src': src_tokenizer,
                'tgt': src_tokenizer
            }
        else:
            tgt_subword_kwargs = self._get_subword_kwargs(side='tgt')
            tgt_tokenizer = pyonmttok.Tokenizer(
                **tgt_subword_kwargs, **self.tgt_other_kwargs
            )
            self.load_models = {
                'src': src_tokenizer,
                'tgt': tgt_tokenizer
            }

    def _tokenize(self, tokens, side='src', is_train=False):
        """Do OpenNMT Tokenizer's tokenize."""
        tokenizer = self.load_models[side]
        sentence = ' '.join(tokens)
        segmented, _ = tokenizer.tokenize(sentence)
        return segmented

    def _detokenize(self, tokens, side='src', is_train=False):
        """Do OpenNMT Tokenizer's detokenize."""
        tokenizer = self.load_models[side]
        detokenized = tokenizer.detokenize(tokens)
        return detokenized

    def apply(self, example, is_train=False, stats=None, **kwargs):
        """Apply OpenNMT Tokenizer to src & tgt."""
        src_out = self._tokenize(example['src'], 'src')
        tgt_out = self._tokenize(example['tgt'], 'tgt')
        if stats is not None:
            n_words = len(example['src']) + len(example['tgt'])
            n_subwords = len(src_out) + len(tgt_out)
            stats.update(SubwordStats(n_subwords, n_words))
        example['src'], example['tgt'] = src_out, tgt_out
        return example

    def apply_reverse(self, translated):
        """Apply OpenNMT Tokenizer to src & tgt."""
        return self._detokenize(translated.split(), 'tgt')

    def _repr_args(self):
        """Return str represent key arguments for class."""
        repr_str = '{}={}'.format('share_vocab', self.share_vocab)
        repr_str += ', src_subword_kwargs={}'.format(
            self._get_subword_kwargs(side='src'))
        repr_str += ', src_onmttok_kwargs={}'.format(self.src_other_kwargs)
        repr_str += ', tgt_subword_kwargs={}'.format(
            self._get_subword_kwargs(side='tgt'))
        repr_str += ', tgt_onmttok_kwargs={}'.format(self.tgt_other_kwargs)
        return repr_str