File size: 7,189 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
""" Translation main class """
import os
import torch
from onmt.constants import DefaultTokens
from onmt.inputters.text_dataset import TextMultiField
from onmt.utils.alignment import build_align_pharaoh


class TranslationBuilder(object):
    """
    Build a word-based translation from the batch output
    of translator and the underlying dictionaries.

    Replacement based on "Addressing the Rare Word
    Problem in Neural Machine Translation" :cite:`Luong2015b`

    Args:
       data (onmt.inputters.Dataset): Data.
       fields (List[Tuple[str, torchtext.data.Field]]): data fields
       n_best (int): number of translations produced
       replace_unk (bool): replace unknown words using attention
       has_tgt (bool): will the batch have gold targets
    """

    def __init__(self, data, fields, n_best=1, replace_unk=False,
                 has_tgt=False, phrase_table=""):
        self.data = data
        self.fields = fields
        self._has_text_src = isinstance(
            dict(self.fields)["src"], TextMultiField)
        self.n_best = n_best
        self.replace_unk = replace_unk
        self.phrase_table_dict = {}
        if phrase_table != "" and os.path.exists(phrase_table):
            with open(phrase_table) as phrase_table_fd:
                for line in phrase_table_fd:
                    phrase_src, phrase_trg = line.rstrip("\n").split(
                        DefaultTokens.PHRASE_TABLE_SEPARATOR)
                    self.phrase_table_dict[phrase_src] = phrase_trg
        self.has_tgt = has_tgt

    def _build_target_tokens(self, src, src_vocab, src_raw, pred, attn):
        tgt_field = dict(self.fields)["tgt"].base_field
        vocab = tgt_field.vocab
        tokens = []

        for tok in pred:
            if tok < len(vocab):
                tokens.append(vocab.itos[tok])
            else:
                tokens.append(src_vocab.itos[tok - len(vocab)])
            if tokens[-1] == tgt_field.eos_token:
                tokens = tokens[:-1]
                break
        if self.replace_unk and attn is not None and src is not None:
            for i in range(len(tokens)):
                if tokens[i] == tgt_field.unk_token:
                    _, max_index = attn[i][:len(src_raw)].max(0)
                    tokens[i] = src_raw[max_index.item()]
                    if self.phrase_table_dict:
                        src_tok = src_raw[max_index.item()]
                        if src_tok in self.phrase_table_dict:
                            tokens[i] = self.phrase_table_dict[src_tok]
        return tokens

    def from_batch(self, translation_batch):
        batch = translation_batch["batch"]
        assert(len(translation_batch["gold_score"]) ==
               len(translation_batch["predictions"]))
        batch_size = batch.batch_size

        preds, pred_score, attn, align, gold_score, indices = list(zip(
            *sorted(zip(translation_batch["predictions"],
                        translation_batch["scores"],
                        translation_batch["attention"],
                        translation_batch["alignment"],
                        translation_batch["gold_score"],
                        batch.indices.data),
                    key=lambda x: x[-1])))

        if not any(align):  # when align is a empty nested list
            align = [None] * batch_size

        # Sorting
        inds, perm = torch.sort(batch.indices)
        if self._has_text_src:
            src = batch.src[0][:, :, 0].index_select(1, perm)
        else:
            src = None
        tgt = batch.tgt[:, :, 0].index_select(1, perm) \
            if self.has_tgt else None

        translations = []
        for b in range(batch_size):
            if self._has_text_src:
                src_vocab = self.data.src_vocabs[inds[b]] \
                    if self.data.src_vocabs else None
                src_raw = self.data.examples[inds[b]].src[0]
            else:
                src_vocab = None
                src_raw = None
            pred_sents = [self._build_target_tokens(
                src[:, b] if src is not None else None,
                src_vocab, src_raw,
                preds[b][n],
                align[b][n] if align[b] is not None else attn[b][n])
                for n in range(self.n_best)]
            gold_sent = None
            if tgt is not None:
                gold_sent = self._build_target_tokens(
                    src[:, b] if src is not None else None,
                    src_vocab, src_raw,
                    tgt[1:, b] if tgt is not None else None, None)

            translation = Translation(
                src[:, b] if src is not None else None,
                src_raw, pred_sents, attn[b], pred_score[b],
                gold_sent, gold_score[b], align[b]
            )
            translations.append(translation)

        return translations


class Translation(object):
    """Container for a translated sentence.

    Attributes:
        src (LongTensor): Source word IDs.
        src_raw (List[str]): Raw source words.
        pred_sents (List[List[str]]): Words from the n-best translations.
        pred_scores (List[List[float]]): Log-probs of n-best translations.
        attns (List[FloatTensor]) : Attention distribution for each
            translation.
        gold_sent (List[str]): Words from gold translation.
        gold_score (List[float]): Log-prob of gold translation.
        word_aligns (List[FloatTensor]): Words Alignment distribution for
            each translation.
    """

    __slots__ = ["src", "src_raw", "pred_sents", "attns", "pred_scores",
                 "gold_sent", "gold_score", "word_aligns"]

    def __init__(self, src, src_raw, pred_sents,
                 attn, pred_scores, tgt_sent, gold_score, word_aligns):
        self.src = src
        self.src_raw = src_raw
        self.pred_sents = pred_sents
        self.attns = attn
        self.pred_scores = pred_scores
        self.gold_sent = tgt_sent
        self.gold_score = gold_score
        self.word_aligns = word_aligns

    def log(self, sent_number):
        """
        Log translation.
        """

        msg = ['\nSENT {}: {}\n'.format(sent_number, self.src_raw)]

        best_pred = self.pred_sents[0]
        best_score = self.pred_scores[0]
        pred_sent = ' '.join(best_pred)
        msg.append('PRED {}: {}\n'.format(sent_number, pred_sent))
        msg.append("PRED SCORE: {:.4f}\n".format(best_score))

        if self.word_aligns is not None:
            pred_align = self.word_aligns[0]
            pred_align_pharaoh = build_align_pharaoh(pred_align)
            pred_align_sent = ' '.join(pred_align_pharaoh)
            msg.append("ALIGN: {}\n".format(pred_align_sent))

        if self.gold_sent is not None:
            tgt_sent = ' '.join(self.gold_sent)
            msg.append('GOLD {}: {}\n'.format(sent_number, tgt_sent))
            msg.append(("GOLD SCORE: {:.4f}\n".format(self.gold_score)))
        if len(self.pred_sents) > 1:
            msg.append('\nBEST HYP:\n')
            for score, sent in zip(self.pred_scores, self.pred_sents):
                msg.append("[{:.4f}] {}\n".format(score, sent))

        return "".join(msg)