File size: 34,313 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#!/usr/bin/env python
"""REST Translation server."""
import codecs
import sys
import os
import time
import json
import threading
import re
import traceback
import importlib
import torch
import onmt.opts

from itertools import islice, zip_longest
from copy import deepcopy
from collections import defaultdict
from argparse import Namespace

from onmt.constants import DefaultTokens
from onmt.utils.logging import init_logger
from onmt.utils.misc import set_random_seed
from onmt.utils.misc import check_model_config
from onmt.utils.alignment import to_word_align
from onmt.utils.parse import ArgumentParser
from onmt.translate.translator import build_translator
from onmt.transforms.features import InferFeatsTransform


def critical(func):
    """Decorator for critical section (mutually exclusive code)"""
    def wrapper(server_model, *args, **kwargs):
        if sys.version_info[0] == 3:
            if not server_model.running_lock.acquire(True, 120):
                raise ServerModelError("Model %d running lock timeout"
                                       % server_model.model_id)
        else:
            # semaphore doesn't have a timeout arg in Python 2.7
            server_model.running_lock.acquire(True)
        try:
            o = func(server_model, *args, **kwargs)
        except (Exception, RuntimeError):
            server_model.running_lock.release()
            raise
        server_model.running_lock.release()
        return o
    return wrapper


class Timer:
    def __init__(self, start=False):
        self.stime = -1
        self.prev = -1
        self.times = {}
        if start:
            self.start()

    def start(self):
        self.stime = time.time()
        self.prev = self.stime
        self.times = {}

    def tick(self, name=None, tot=False):
        t = time.time()
        if not tot:
            elapsed = t - self.prev
        else:
            elapsed = t - self.stime
        self.prev = t

        if name is not None:
            self.times[name] = elapsed
        return elapsed


class ServerModelError(Exception):
    pass


class CTranslate2Translator(object):
    """
    This class wraps the ctranslate2.Translator object to
    reproduce the onmt.translate.translator API.
    """

    def __init__(self, model_path, ct2_translator_args,
                 ct2_translate_batch_args, target_prefix=False,
                 preload=False):
        import ctranslate2
        self.translator = ctranslate2.Translator(
            model_path,
            **ct2_translator_args)
        self.ct2_translate_batch_args = ct2_translate_batch_args
        self.target_prefix = target_prefix
        if preload:
            # perform a first request to initialize everything
            dummy_translation = self.translate(["a"])
            print("Performed a dummy translation to initialize the model",
                  dummy_translation)
            time.sleep(1)
            self.translator.unload_model(to_cpu=True)

    @staticmethod
    def convert_onmt_to_ct2_opts(ct2_translator_args,
                                 ct2_translate_batch_args, opt):

        def setdefault_if_exists_must_match(obj, name, value):
            if name in obj:
                assert value == obj[name], f"{name} is different in"\
                    " OpenNMT-py config and in CTranslate2 config"\
                    f" ({value} vs {obj[name]})"
            else:
                obj.setdefault(name, value)

        default_for_translator = {
            "inter_threads": 1,
            "intra_threads": torch.get_num_threads(),
            "compute_type": "default",
        }
        for name, value in default_for_translator.items():
            ct2_translator_args.setdefault(name, value)

        onmt_for_translator = {
            "device": "cuda" if opt.cuda else "cpu",
            "device_index": opt.gpu if opt.cuda else 0,
        }
        for name, value in onmt_for_translator.items():
            setdefault_if_exists_must_match(
                ct2_translator_args, name, value)

        onmt_for_translate_batch_enforce = {
            "beam_size": opt.beam_size,
            "max_batch_size": opt.batch_size,
            "num_hypotheses": opt.n_best,
            "max_decoding_length": opt.max_length,
            "min_decoding_length": opt.min_length,
        }
        for name, value in onmt_for_translate_batch_enforce.items():
            setdefault_if_exists_must_match(
                ct2_translate_batch_args, name, value)

    def translate(self, texts_to_translate, batch_size=8,
                  tgt=None, src_feats=None):
        assert (src_feats is None) or (src_feats == {}), \
            "CTranslate2 does not support source features"
        batch = [item.split(" ") for item in texts_to_translate]
        if tgt is not None:
            tgt = [item.split(" ") for item in tgt]
        preds = self.translator.translate_batch(
            batch,
            target_prefix=tgt if self.target_prefix else None,
            return_scores=True,
            **self.ct2_translate_batch_args
        )
        scores = [[item["score"] for item in ex] for ex in preds]
        predictions = [[" ".join(item["tokens"]) for item in ex]
                       for ex in preds]
        return scores, predictions

    def to_cpu(self):
        self.translator.unload_model(to_cpu=True)

    def to_gpu(self):
        self.translator.load_model()


class TranslationServer(object):
    def __init__(self):
        self.models = {}
        self.next_id = 0

    def start(self, config_file):
        """Read the config file and pre-/load the models."""
        self.config_file = config_file
        with open(self.config_file) as f:
            self.confs = json.load(f)

        self.models_root = self.confs.get('models_root', './available_models')
        for i, conf in enumerate(self.confs["models"]):
            if "models" not in conf:
                if "model" in conf:
                    # backwards compatibility for confs
                    conf["models"] = [conf["model"]]
                else:
                    raise ValueError("""Incorrect config file: missing 'models'
                                        parameter for model #%d""" % i)
            check_model_config(conf, self.models_root)
            kwargs = {'timeout': conf.get('timeout', None),
                      'load': conf.get('load', None),
                      'preprocess_opt': conf.get('preprocess', None),
                      'tokenizer_opt': conf.get('tokenizer', None),
                      'postprocess_opt': conf.get('postprocess', None),
                      'custom_opt': conf.get('custom_opt', None),
                      'on_timeout': conf.get('on_timeout', None),
                      'model_root': conf.get('model_root', self.models_root),
                      'ct2_model': conf.get('ct2_model', None),
                      'ct2_translator_args': conf.get('ct2_translator_args',
                                                      {}),
                      'ct2_translate_batch_args': conf.get(
                          'ct2_translate_batch_args', {}),
                      'features_opt': conf.get('features', None)
                      }
            kwargs = {k: v for (k, v) in kwargs.items() if v is not None}
            model_id = conf.get("id", None)
            opt = conf["opt"]
            opt["models"] = conf["models"]
            self.preload_model(opt, model_id=model_id, **kwargs)

    def clone_model(self, model_id, opt, timeout=-1):
        """Clone a model `model_id`.

        Different options may be passed. If `opt` is None, it will use the
        same set of options
        """
        if model_id in self.models:
            if opt is None:
                opt = self.models[model_id].user_opt
            opt["models"] = self.models[model_id].opt.models
            return self.load_model(opt, timeout)
        else:
            raise ServerModelError("No such model '%s'" % str(model_id))

    def load_model(self, opt, model_id=None, **model_kwargs):
        """Load a model given a set of options
        """
        model_id = self.preload_model(opt, model_id=model_id, **model_kwargs)
        load_time = self.models[model_id].load_time

        return model_id, load_time

    def preload_model(self, opt, model_id=None, **model_kwargs):
        """Preloading the model: updating internal datastructure

        It will effectively load the model if `load` is set
        """
        if model_id is not None:
            if model_id in self.models.keys():
                raise ValueError("Model ID %d already exists" % model_id)
        else:
            model_id = self.next_id
            while model_id in self.models.keys():
                model_id += 1
            self.next_id = model_id + 1
        print("Pre-loading model %d" % model_id)
        model = ServerModel(opt, model_id, **model_kwargs)
        self.models[model_id] = model

        return model_id

    def run(self, inputs):
        """Translate `inputs`

        We keep the same format as the Lua version i.e.
        ``[{"id": model_id, "src": "sequence to translate"},{ ...}]``

        We use inputs[0]["id"] as the model id
        """

        model_id = inputs[0].get("id", 0)
        if model_id in self.models and self.models[model_id] is not None:
            return self.models[model_id].run(inputs)
        else:
            print("Error No such model '%s'" % str(model_id))
            raise ServerModelError("No such model '%s'" % str(model_id))

    def unload_model(self, model_id):
        """Manually unload a model.

        It will free the memory and cancel the timer
        """

        if model_id in self.models and self.models[model_id] is not None:
            self.models[model_id].unload()
        else:
            raise ServerModelError("No such model '%s'" % str(model_id))

    def list_models(self):
        """Return the list of available models
        """
        models = []
        for _, model in self.models.items():
            models += [model.to_dict()]
        return models


class ServerModel(object):
    """Wrap a model with server functionality.

    Args:
        opt (dict): Options for the Translator
        model_id (int): Model ID
        preprocess_opt (list): Options for preprocess processus or None
        tokenizer_opt (dict): Options for the tokenizer or None
        postprocess_opt (list): Options for postprocess processus or None
        custom_opt (dict): Custom options, can be used within preprocess or
            postprocess, default None
        load (bool): whether to load the model during :func:`__init__()`
        timeout (int): Seconds before running :func:`do_timeout()`
            Negative values means no timeout
        on_timeout (str): Options are ["to_cpu", "unload"]. Set what to do on
            timeout (see :func:`do_timeout()`.)
        model_root (str): Path to the model directory
            it must contain the model and tokenizer file
    """

    def __init__(self, opt, model_id, preprocess_opt=None, tokenizer_opt=None,
                 postprocess_opt=None, custom_opt=None, load=False, timeout=-1,
                 on_timeout="to_cpu", model_root="./", ct2_model=None,
                 ct2_translator_args=None, ct2_translate_batch_args=None,
                 features_opt=None):
        self.model_root = model_root
        self.opt = self.parse_opt(opt)
        self.custom_opt = custom_opt

        self.model_id = model_id
        self.preprocess_opt = preprocess_opt
        self.tokenizers_opt = tokenizer_opt
        self.features_opt = features_opt
        self.postprocess_opt = postprocess_opt
        self.timeout = timeout
        self.on_timeout = on_timeout

        self.ct2_model = os.path.join(model_root, ct2_model) \
            if ct2_model is not None else None
        self.ct2_translator_args = ct2_translator_args
        self.ct2_translate_batch_args = ct2_translate_batch_args

        self.unload_timer = None
        self.user_opt = opt
        self.tokenizers = None
        self.feats_transform = None

        if len(self.opt.log_file) > 0:
            log_file = os.path.join(model_root, self.opt.log_file)
        else:
            log_file = None
        self.logger = init_logger(log_file=log_file,
                                  log_file_level=self.opt.log_file_level,
                                  rotate=True)

        self.loading_lock = threading.Event()
        self.loading_lock.set()
        self.running_lock = threading.Semaphore(value=1)

        set_random_seed(self.opt.seed, self.opt.cuda)

        if self.preprocess_opt is not None:
            self.logger.info("Loading preprocessor")
            self.preprocessor = []

            for function_path in self.preprocess_opt:
                function = get_function_by_path(function_path)
                self.preprocessor.append(function)

        if self.tokenizers_opt is not None:
            if "src" in self.tokenizers_opt and "tgt" in self.tokenizers_opt:
                self.logger.info("Loading src & tgt tokenizer")
                self.tokenizers = {
                    'src': self.build_tokenizer(tokenizer_opt['src']),
                    'tgt': self.build_tokenizer(tokenizer_opt['tgt'])
                }
            else:
                self.logger.info("Loading tokenizer")
                self.tokenizers_opt = {
                    'src': tokenizer_opt,
                    'tgt': tokenizer_opt
                }
                tokenizer = self.build_tokenizer(tokenizer_opt)
                self.tokenizers = {
                    'src': tokenizer,
                    'tgt': tokenizer
                }

        if self.features_opt is not None:
            self.feats_transform = InferFeatsTransform(
                Namespace(**self.features_opt))

        if self.postprocess_opt is not None:
            self.logger.info("Loading postprocessor")
            self.postprocessor = []

            for function_path in self.postprocess_opt:
                function = get_function_by_path(function_path)
                self.postprocessor.append(function)

        if load:
            self.load(preload=True)
            self.stop_unload_timer()

    def parse_opt(self, opt):
        """Parse the option set passed by the user using `onmt.opts`

       Args:
           opt (dict): Options passed by the user

       Returns:
           opt (argparse.Namespace): full set of options for the Translator
        """

        prec_argv = sys.argv
        sys.argv = sys.argv[:1]
        parser = ArgumentParser()
        onmt.opts.translate_opts(parser)

        models = opt['models']
        if not isinstance(models, (list, tuple)):
            models = [models]
        opt['models'] = [os.path.join(self.model_root, model)
                         for model in models]
        opt['src'] = "dummy_src"

        for (k, v) in opt.items():
            if k == 'models':
                sys.argv += ['-model']
                sys.argv += [str(model) for model in v]
            elif type(v) == bool:
                sys.argv += ['-%s' % k]
            else:
                sys.argv += ['-%s' % k, str(v)]

        opt = parser.parse_args()
        ArgumentParser.validate_translate_opts(opt)
        opt.cuda = opt.gpu > -1

        sys.argv = prec_argv
        return opt

    @property
    def loaded(self):
        return hasattr(self, 'translator')

    def load(self, preload=False):
        self.loading_lock.clear()

        timer = Timer()
        self.logger.info("Loading model %d" % self.model_id)
        timer.start()

        try:
            if self.ct2_model is not None:
                CTranslate2Translator.convert_onmt_to_ct2_opts(
                    self.ct2_translator_args, self.ct2_translate_batch_args,
                    self.opt)
                self.translator = CTranslate2Translator(
                    self.ct2_model,
                    ct2_translator_args=self.ct2_translator_args,
                    ct2_translate_batch_args=self.ct2_translate_batch_args,
                    target_prefix=self.opt.tgt_prefix,
                    preload=preload)
            else:
                self.translator = build_translator(
                    self.opt, report_score=False,
                    out_file=codecs.open(os.devnull, "w", "utf-8"))
        except RuntimeError as e:
            raise ServerModelError("Runtime Error: %s" % str(e))

        timer.tick("model_loading")
        self.load_time = timer.tick()
        self.reset_unload_timer()
        self.loading_lock.set()

    @critical
    def run(self, inputs):
        """Translate `inputs` using this model

        Args:
            inputs (List[dict[str, str]]): [{"src": "..."},{"src": ...}]

        Returns:
            result (list): translations
            times (dict): containing times
        """

        self.stop_unload_timer()

        timer = Timer()
        timer.start()

        self.logger.info("Running translation using %d" % self.model_id)

        if not self.loading_lock.is_set():
            self.logger.info(
                "Model #%d is being loaded by another thread, waiting"
                % self.model_id)
            if not self.loading_lock.wait(timeout=30):
                raise ServerModelError("Model %d loading timeout"
                                       % self.model_id)

        else:
            if not self.loaded:
                self.load()
                timer.tick(name="load")
            elif self.opt.cuda:
                self.to_gpu()
                timer.tick(name="to_gpu")

        texts = []
        head_spaces = []
        tail_spaces = []
        all_preprocessed = []
        for i, inp in enumerate(inputs):
            src = inp['src']
            whitespaces_before, whitespaces_after = "", ""
            match_before = re.search(r'^\s+', src)
            match_after = re.search(r'\s+$', src)
            if match_before is not None:
                whitespaces_before = match_before.group(0)
            if match_after is not None:
                whitespaces_after = match_after.group(0)
            head_spaces.append(whitespaces_before)
            # every segment becomes a dict for flexibility purposes
            seg_dict = self.maybe_preprocess(inp)
            all_preprocessed.append(seg_dict)
            for seg, ref, feats in zip_longest(
                    seg_dict["seg"], seg_dict["ref"],
                    seg_dict["src_feats"]):
                tok = self.maybe_tokenize(seg)
                if ref is not None:
                    ref = self.maybe_tokenize(ref, side='tgt')
                inferred_feats = self.transform_feats(seg, tok, feats)
                texts.append((tok, ref, inferred_feats))
            tail_spaces.append(whitespaces_after)

        empty_indices = []
        texts_to_translate, texts_ref = [], []
        texts_features = defaultdict(list)
        for i, (tok, ref_tok, feats) in enumerate(texts):
            if tok == "":
                empty_indices.append(i)
            else:
                texts_to_translate.append(tok)
                texts_ref.append(ref_tok)
                for feat_name, feat_values in feats.items():
                    texts_features[feat_name].append(feat_values)
        if any([item is None for item in texts_ref]):
            texts_ref = None

        scores = []
        predictions = []

        if len(texts_to_translate) > 0:
            try:
                scores, predictions = self.translator.translate(
                    texts_to_translate,
                    src_feats=texts_features,
                    tgt=texts_ref,
                    batch_size=len(texts_to_translate)
                    if self.opt.batch_size == 0
                    else self.opt.batch_size)
            except (RuntimeError, Exception) as e:
                err = "Error: %s" % str(e)
                self.logger.error(err)
                self.logger.error("repr(text_to_translate): "
                                  + repr(texts_to_translate))
                self.logger.error("model: #%s" % self.model_id)
                self.logger.error("model opt: " + str(self.opt.__dict__))
                self.logger.error(traceback.format_exc())

                raise ServerModelError(err)

        timer.tick(name="translation")
        self.logger.info("""Using model #%d\t%d inputs
               \ttranslation time: %f""" % (self.model_id, len(texts),
                                            timer.times['translation']))
        self.reset_unload_timer()

        # NOTE: translator returns lists of `n_best` list
        def flatten_list(_list): return sum(_list, [])
        tiled_texts = [t for t in texts_to_translate
                       for _ in range(self.opt.n_best)]
        results = flatten_list(predictions)

        def maybe_item(x): return x.item() if type(x) is torch.Tensor else x
        scores = [maybe_item(score_tensor)
                  for score_tensor in flatten_list(scores)]

        results = [self.maybe_detokenize_with_align(result, src)
                   for result, src in zip(results, tiled_texts)]

        aligns = [align for _, align in results]
        results = [tokens for tokens, _ in results]

        # build back results with empty texts
        for i in empty_indices:
            j = i * self.opt.n_best
            results = results[:j] + [""] * self.opt.n_best + results[j:]
            aligns = aligns[:j] + [None] * self.opt.n_best + aligns[j:]
            scores = scores[:j] + [0] * self.opt.n_best + scores[j:]

        rebuilt_segs, scores, aligns = self.rebuild_seg_packages(
            all_preprocessed, results, scores, aligns, self.opt.n_best)

        results = [self.maybe_postprocess(seg) for seg in rebuilt_segs]

        head_spaces = [h for h in head_spaces for i in range(self.opt.n_best)]
        tail_spaces = [h for h in tail_spaces for i in range(self.opt.n_best)]
        results = ["".join(items)
                   for items in zip(head_spaces, results, tail_spaces)]

        self.logger.info("Translation Results: %d", len(results))

        return results, scores, self.opt.n_best, timer.times, aligns

    def rebuild_seg_packages(self, all_preprocessed, results,
                             scores, aligns, n_best):
        """
        Rebuild proper segment packages based on initial n_seg.
        """
        offset = 0
        rebuilt_segs = []
        avg_scores = []
        merged_aligns = []
        for i, seg_dict in enumerate(all_preprocessed):
            n_seg = seg_dict["n_seg"]
            sub_results = results[n_best * offset: (offset + n_seg) * n_best]
            sub_scores = scores[n_best * offset: (offset + n_seg) * n_best]
            sub_aligns = aligns[n_best * offset: (offset + n_seg) * n_best]
            for j in range(n_best):
                _seg_dict = deepcopy(seg_dict)
                _seg_dict["seg"] = list(islice(sub_results, j, None, n_best))
                rebuilt_segs.append(_seg_dict)
                sub_sub_scores = list(islice(sub_scores, j, None, n_best))
                avg_score = sum(sub_sub_scores)/n_seg if n_seg != 0 else 0
                avg_scores.append(avg_score)
                sub_sub_aligns = list(islice(sub_aligns, j, None, n_best))
                merged_aligns.append(sub_sub_aligns)
            offset += n_seg
        return rebuilt_segs, avg_scores, merged_aligns

    def do_timeout(self):
        """Timeout function that frees GPU memory.

        Moves the model to CPU or unloads it; depending on
        attr`self.on_timemout` value
        """

        if self.on_timeout == "unload":
            self.logger.info("Timeout: unloading model %d" % self.model_id)
            self.unload()
        if self.on_timeout == "to_cpu":
            self.logger.info("Timeout: sending model %d to CPU"
                             % self.model_id)
            self.to_cpu()

    @critical
    def unload(self):
        self.logger.info("Unloading model %d" % self.model_id)
        del self.translator
        if self.opt.cuda:
            torch.cuda.empty_cache()
        self.stop_unload_timer()
        self.unload_timer = None

    def stop_unload_timer(self):
        if self.unload_timer is not None:
            self.unload_timer.cancel()

    def reset_unload_timer(self):
        if self.timeout < 0:
            return

        self.stop_unload_timer()
        self.unload_timer = threading.Timer(self.timeout, self.do_timeout)
        self.unload_timer.start()

    def to_dict(self):
        hide_opt = ["models", "src"]
        d = {"model_id": self.model_id,
             "opt": {k: self.user_opt[k] for k in self.user_opt.keys()
                     if k not in hide_opt},
             "models": self.user_opt["models"],
             "loaded": self.loaded,
             "timeout": self.timeout,
             }
        if self.tokenizers_opt is not None:
            d["tokenizer"] = self.tokenizers_opt
        return d

    @critical
    def to_cpu(self):
        """Move the model to CPU and clear CUDA cache."""
        if type(self.translator) == CTranslate2Translator:
            self.translator.to_cpu()
        else:
            self.translator.model.cpu()
            if self.opt.cuda:
                torch.cuda.empty_cache()

    def to_gpu(self):
        """Move the model to GPU."""
        if type(self.translator) == CTranslate2Translator:
            self.translator.to_gpu()
        else:
            torch.cuda.set_device(self.opt.gpu)
            self.translator.model.cuda()

    def maybe_preprocess(self, sequence):
        """Preprocess the sequence (or not)

        """
        if sequence.get("src", None) is not None:
            sequence = deepcopy(sequence)
            sequence["seg"] = [sequence["src"].strip()]
            sequence.pop("src")
            sequence["ref"] = [sequence.get('ref', None)]
            sequence["src_feats"] = [sequence.get('src_feats', {})]
            sequence["n_seg"] = 1
        if self.preprocess_opt is not None:
            return self.preprocess(sequence)
        return sequence

    def preprocess(self, sequence):
        """Preprocess a single sequence.

        Args:
            sequence (str): The sequence to preprocess.

        Returns:
            sequence (str): The preprocessed sequence.
        """
        if self.preprocessor is None:
            raise ValueError("No preprocessor loaded")
        for function in self.preprocessor:
            sequence = function(sequence, self)
        return sequence

    def transform_feats(self, raw_src, tok_src, feats):
        """Apply InferFeatsTransform to features"""
        if self.feats_transform is None:
            return feats
        ex = {
            "src": tok_src.split(' '),
            "src_original": raw_src.split(' '),
            "src_feats": {k:  v.split(' ') for k, v in feats.items()}
        }
        transformed_ex = self.feats_transform.apply(ex)
        if not transformed_ex:
            raise Exception("Error inferring feats")
        transformed_feats = dict()
        for feat_name, feat_values in transformed_ex["src_feats"].items():
            transformed_feats[feat_name] = " ".join(feat_values)
        return transformed_feats

    def build_tokenizer(self, tokenizer_opt):
        """Build tokenizer described by `tokenizer_opt`."""
        if "type" not in tokenizer_opt:
            raise ValueError(
                "Missing mandatory tokenizer option 'type'")

        if tokenizer_opt['type'] == 'sentencepiece':
            if "model" not in tokenizer_opt:
                raise ValueError(
                    "Missing mandatory tokenizer option 'model'")
            import sentencepiece as spm
            tokenizer = spm.SentencePieceProcessor()
            model_path = os.path.join(self.model_root,
                                      tokenizer_opt['model'])
            tokenizer.Load(model_path)
        elif tokenizer_opt['type'] == 'pyonmttok':
            if "params" not in tokenizer_opt:
                raise ValueError(
                    "Missing mandatory tokenizer option 'params'")
            import pyonmttok
            if tokenizer_opt["mode"] is not None:
                mode = tokenizer_opt["mode"]
            else:
                mode = None
            # load can be called multiple times: modify copy
            tokenizer_params = dict(tokenizer_opt["params"])
            for key, value in tokenizer_opt["params"].items():
                if key.endswith("path"):
                    tokenizer_params[key] = os.path.join(
                        self.model_root, value)
            tokenizer = pyonmttok.Tokenizer(mode,
                                            **tokenizer_params)
        else:
            raise ValueError("Invalid value for tokenizer type")
        return tokenizer

    def maybe_tokenize(self, sequence, side='src'):
        """Tokenize the sequence (or not).

        Same args/returns as `tokenize`
        """

        if self.tokenizers_opt is not None:
            return self.tokenize(sequence, side)
        return sequence

    def tokenize(self, sequence, side='src'):
        """Tokenize a single sequence.

        Args:
            sequence (str): The sequence to tokenize.

        Returns:
            tok (str): The tokenized sequence.
        """

        if self.tokenizers is None:
            raise ValueError("No tokenizer loaded")

        if self.tokenizers_opt[side]["type"] == "sentencepiece":
            tok = self.tokenizers[side].EncodeAsPieces(sequence)
            tok = " ".join(tok)
        elif self.tokenizers_opt[side]["type"] == "pyonmttok":
            tok, _ = self.tokenizers[side].tokenize(sequence)
            tok = " ".join(tok)
        return tok

    def tokenizer_marker(self, side='src'):
        """Return marker used in `side` tokenizer."""
        marker = None
        if self.tokenizers_opt is not None:
            tokenizer_type = self.tokenizers_opt[side].get('type', None)
            if tokenizer_type == "pyonmttok":
                params = self.tokenizers_opt[side].get('params', None)
                if params is not None:
                    if params.get("joiner_annotate", None) is not None:
                        marker = 'joiner'
                    elif params.get("spacer_annotate", None) is not None:
                        marker = 'spacer'
            elif tokenizer_type == "sentencepiece":
                marker = 'spacer'
        return marker

    def maybe_detokenize_with_align(self, sequence, src, side='tgt'):
        """De-tokenize (or not) the sequence (with alignment).

        Args:
            sequence (str): The sequence to detokenize, possible with
                alignment seperate by ` ||| `.

        Returns:
            sequence (str): The detokenized sequence.
            align (str): The alignment correspand to detokenized src/tgt
                sorted or None if no alignment in output.
        """
        align = None
        if self.opt.report_align:
            # output contain alignment
            sequence, align = sequence.split(DefaultTokens.ALIGNMENT_SEPARATOR)
            if align != '':
                align = self.maybe_convert_align(src, sequence, align)
        sequence = self.maybe_detokenize(sequence, side)
        return (sequence, align)

    def maybe_detokenize(self, sequence, side='tgt'):
        """De-tokenize the sequence (or not)

        Same args/returns as :func:`tokenize()`
        """

        if self.tokenizers_opt is not None and ''.join(sequence.split()) != '':
            return self.detokenize(sequence, side)
        return sequence

    def detokenize(self, sequence, side='tgt'):
        """Detokenize a single sequence

        Same args/returns as :func:`tokenize()`
        """

        if self.tokenizers is None:
            raise ValueError("No tokenizer loaded")

        if self.tokenizers_opt[side]["type"] == "sentencepiece":
            detok = self.tokenizers[side].DecodePieces(sequence.split())
        elif self.tokenizers_opt[side]["type"] == "pyonmttok":
            detok = self.tokenizers[side].detokenize(sequence.split())

        return detok

    def maybe_convert_align(self, src, tgt, align):
        """Convert alignment to match detokenized src/tgt (or not).

        Args:
            src (str): The tokenized source sequence.
            tgt (str): The tokenized target sequence.
            align (str): The alignment correspand to src/tgt pair.

        Returns:
            align (str): The alignment correspand to detokenized src/tgt.
        """
        if self.tokenizers_opt is not None:
            src_marker = self.tokenizer_marker(side='src')
            tgt_marker = self.tokenizer_marker(side='tgt')
            if src_marker is None or tgt_marker is None:
                raise ValueError("To get decoded alignment, joiner/spacer "
                                 "should be used in both side's tokenizer.")
            elif ''.join(tgt.split()) != '':
                align = to_word_align(src, tgt, align, src_marker, tgt_marker)
        return align

    def maybe_postprocess(self, sequence):
        """Postprocess the sequence (or not)

        """
        if self.postprocess_opt is not None:
            return self.postprocess(sequence)
        else:
            return sequence["seg"][0]

    def postprocess(self, sequence):
        """Preprocess a single sequence.

        Args:
            sequence (str): The sequence to process.

        Returns:
            sequence (str): The postprocessed sequence.
        """
        if self.postprocessor is None:
            raise ValueError("No postprocessor loaded")
        for function in self.postprocessor:
            sequence = function(sequence, self)
        return sequence


def get_function_by_path(path, args=[], kwargs={}):
    module_name = ".".join(path.split(".")[:-1])
    function_name = path.split(".")[-1]
    try:
        module = importlib.import_module(module_name)
    except ValueError as e:
        print("Cannot import module '%s'" % module_name)
        raise e
    function = getattr(module, function_name)
    return function