File size: 7,072 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
""" Pytorch Distributed utils
    This piece of code was heavily inspired by the equivalent of Fairseq-py
    https://github.com/pytorch/fairseq
"""
import os
import signal
import math
import pickle

import torch.distributed

from onmt.utils.misc import set_random_seed
from onmt.utils.logging import init_logger, logger


def is_master(opt, device_id):
    return opt.gpu_ranks[device_id] == 0


def multi_init(opt, device_id):
    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip=opt.master_ip,
        master_port=opt.master_port)
    dist_world_size = opt.world_size
    torch.distributed.init_process_group(
        backend=opt.gpu_backend, init_method=dist_init_method,
        world_size=dist_world_size, rank=opt.gpu_ranks[device_id])
    gpu_rank = torch.distributed.get_rank()
    if not is_master(opt, device_id):
        logger.disabled = True

    return gpu_rank


def all_reduce_and_rescale_tensors(tensors, rescale_denom,
                                   buffer_size=10485760):
    """All-reduce and rescale tensors in chunks of the specified size.

    Args:
        tensors: list of Tensors to all-reduce
        rescale_denom: denominator for rescaling summed Tensors
        buffer_size: all-reduce chunk size in bytes
    """
    # buffer size in bytes, determine equiv. # of elements based on data type
    buffer_t = tensors[0].new(
        math.ceil(buffer_size / tensors[0].element_size())).zero_()
    buffer = []

    def all_reduce_buffer():
        # copy tensors into buffer_t
        offset = 0
        for t in buffer:
            numel = t.numel()
            buffer_t[offset:offset+numel].copy_(t.view(-1))
            offset += numel

        # all-reduce and rescale
        torch.distributed.all_reduce(buffer_t[:offset])
        buffer_t.div_(rescale_denom)

        # copy all-reduced buffer back into tensors
        offset = 0
        for t in buffer:
            numel = t.numel()
            t.view(-1).copy_(buffer_t[offset:offset+numel])
            offset += numel

    filled = 0
    for t in tensors:
        sz = t.numel() * t.element_size()
        if sz > buffer_size:
            # tensor is bigger than buffer, all-reduce and rescale directly
            torch.distributed.all_reduce(t)
            t.div_(rescale_denom)
        elif filled + sz > buffer_size:
            # buffer is full, all-reduce and replace buffer with grad
            all_reduce_buffer()
            buffer = [t]
            filled = sz
        else:
            # add tensor to buffer
            buffer.append(t)
            filled += sz

    if len(buffer) > 0:
        all_reduce_buffer()


def all_gather_list(data, max_size=4096):
    """Gathers arbitrary data from all nodes into a list."""
    world_size = torch.distributed.get_world_size()
    if not hasattr(all_gather_list, '_in_buffer') or \
            max_size != all_gather_list._in_buffer.size():
        all_gather_list._in_buffer = torch.cuda.ByteTensor(max_size)
        all_gather_list._out_buffers = [
            torch.cuda.ByteTensor(max_size)
            for i in range(world_size)
        ]
    in_buffer = all_gather_list._in_buffer
    out_buffers = all_gather_list._out_buffers

    enc = pickle.dumps(data)
    enc_size = len(enc)
    if enc_size + 2 > max_size:
        raise ValueError(
            'encoded data exceeds max_size: {}'.format(enc_size + 2))
    assert max_size < 255*256
    in_buffer[0] = enc_size // 255  # this encoding works for max_size < 65k
    in_buffer[1] = enc_size % 255
    in_buffer[2:enc_size+2] = torch.ByteTensor(list(enc))

    torch.distributed.all_gather(out_buffers, in_buffer.cuda())

    results = []
    for i in range(world_size):
        out_buffer = out_buffers[i]
        size = (255 * out_buffer[0].item()) + out_buffer[1].item()

        bytes_list = bytes(out_buffer[2:size+2].tolist())
        result = pickle.loads(bytes_list)
        results.append(result)
    return results


class ErrorHandler(object):
    """A class that listens for exceptions in children processes and propagates
    the tracebacks to the parent process."""

    def __init__(self, error_queue):
        """ init error handler """
        import signal
        import threading
        self.error_queue = error_queue
        self.children_pids = []
        self.error_thread = threading.Thread(
            target=self.error_listener, daemon=True)
        self.error_thread.start()
        signal.signal(signal.SIGUSR1, self.signal_handler)

    def add_child(self, pid):
        """ error handler """
        self.children_pids.append(pid)

    def error_listener(self):
        """ error listener """
        (rank, original_trace) = self.error_queue.get()
        self.error_queue.put((rank, original_trace))
        os.kill(os.getpid(), signal.SIGUSR1)

    def signal_handler(self, signalnum, stackframe):
        """ signal handler """
        for pid in self.children_pids:
            os.kill(pid, signal.SIGINT)  # kill children processes
        (rank, original_trace) = self.error_queue.get()
        msg = """\n\n-- Tracebacks above this line can probably
                 be ignored --\n\n"""
        msg += original_trace
        raise Exception(msg)


def batch_producer(generator_to_serve, queue, semaphore, opt, device_id):
    """Produce batches to `queues` from `generator_to_serve`."""
    log_level = "INFO" if opt.verbose or device_id == 0 else "WARNING"
    init_logger(opt.log_file, log_level=log_level)
    set_random_seed(opt.seed, False)

    def pred(x):
        """
        Filters batches that belong only
        to gpu_ranks of current node
        """
        for rank in opt.gpu_ranks:
            if x[0] % opt.world_size == rank:
                return True

    generator_to_serve = filter(
        pred, enumerate(generator_to_serve))

    def next_batch():
        # NOTE: stride (if needed) is handled at the
        # generator (train_iter) level
        new_batch = next(generator_to_serve)
        semaphore.acquire()
        return new_batch[1]

    b = next_batch()

    while True:
        b.dataset = None
        # Move batch to correspond device_id when consumer iterate

        # hack to dodge unpicklable `dict_keys`
        b.fields = list(b.fields)
        queue.put(b)
        b = next_batch()


def consumer(process_fn, opt, device_id, error_queue, batch_queue, semaphore):  # noqa: E501
    """Run `process_fn` on `device_id` with data from `batch_queue`."""
    try:
        gpu_rank = multi_init(opt, device_id)
        if gpu_rank != opt.gpu_ranks[device_id]:
            raise AssertionError("An error occurred in \
                  Distributed initialization")
        process_fn(opt, device_id=device_id,
                   batch_queue=batch_queue, semaphore=semaphore)
    except KeyboardInterrupt:
        pass  # killed by parent, do nothing
    except Exception:
        # propagate exception to parent process, keeping original traceback
        import traceback
        error_queue.put((opt.gpu_ranks[device_id], traceback.format_exc()))