File size: 5,768 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
""" Report manager utility """
import time
from datetime import datetime

import onmt

from onmt.utils.logging import logger


def build_report_manager(opt, gpu_rank):
    if opt.tensorboard and gpu_rank <= 0:
        from torch.utils.tensorboard import SummaryWriter
        if not hasattr(opt, 'tensorboard_log_dir_dated'):
            opt.tensorboard_log_dir_dated = (
                opt.tensorboard_log_dir +
                datetime.now().strftime("/%b-%d_%H-%M-%S")
            )
        writer = SummaryWriter(opt.tensorboard_log_dir_dated, comment="Unmt")
    else:
        writer = None

    report_mgr = ReportMgr(opt.report_every, start_time=-1,
                           tensorboard_writer=writer)
    return report_mgr


class ReportMgrBase(object):
    """
    Report Manager Base class
    Inherited classes should override:
        * `_report_training`
        * `_report_step`
    """

    def __init__(self, report_every, start_time=-1.):
        """
        Args:
            report_every(int): Report status every this many sentences
            start_time(float): manually set report start time. Negative values
                means that you will need to set it later or use `start()`
        """
        self.report_every = report_every
        self.start_time = start_time

    def start(self):
        self.start_time = time.time()

    def log(self, *args, **kwargs):
        logger.info(*args, **kwargs)

    def report_training(self, step, num_steps, learning_rate, patience,
                        report_stats, multigpu=False):
        """
        This is the user-defined batch-level traing progress
        report function.

        Args:
            step(int): current step count.
            num_steps(int): total number of batches.
            learning_rate(float): current learning rate.
            report_stats(Statistics): old Statistics instance.
        Returns:
            report_stats(Statistics): updated Statistics instance.
        """
        if self.start_time < 0:
            raise ValueError("""ReportMgr needs to be started
                                (set 'start_time' or use 'start()'""")

        if step % self.report_every == 0:
            if multigpu:
                report_stats = \
                    onmt.utils.Statistics.all_gather_stats(report_stats)
            self._report_training(
                step, num_steps, learning_rate, patience, report_stats)
            return onmt.utils.Statistics()
        else:
            return report_stats

    def _report_training(self, *args, **kwargs):
        """ To be overridden """
        raise NotImplementedError()

    def report_step(self, lr, patience, step, train_stats=None,
                    valid_stats=None):
        """
        Report stats of a step

        Args:
            lr(float): current learning rate
            patience(int): current patience
            step(int): current step
            train_stats(Statistics): training stats
            valid_stats(Statistics): validation stats
        """
        self._report_step(
            lr, patience, step,
            train_stats=train_stats,
            valid_stats=valid_stats)

    def _report_step(self, *args, **kwargs):
        raise NotImplementedError()


class ReportMgr(ReportMgrBase):
    def __init__(self, report_every, start_time=-1., tensorboard_writer=None):
        """
        A report manager that writes statistics on standard output as well as
        (optionally) TensorBoard

        Args:
            report_every(int): Report status every this many sentences
            tensorboard_writer(:obj:`tensorboard.SummaryWriter`):
                The TensorBoard Summary writer to use or None
        """
        super(ReportMgr, self).__init__(report_every, start_time)
        self.tensorboard_writer = tensorboard_writer

    def maybe_log_tensorboard(self, stats, prefix, learning_rate,
                              patience, step):
        if self.tensorboard_writer is not None:
            stats.log_tensorboard(
                prefix, self.tensorboard_writer, learning_rate, patience, step)

    def _report_training(self, step, num_steps, learning_rate, patience,
                         report_stats):
        """
        See base class method `ReportMgrBase.report_training`.
        """
        report_stats.output(step, num_steps,
                            learning_rate, self.start_time)

        self.maybe_log_tensorboard(report_stats,
                                   "progress",
                                   learning_rate,
                                   patience,
                                   step)
        report_stats = onmt.utils.Statistics()

        return report_stats

    def _report_step(self, lr, patience, step,
                     train_stats=None,
                     valid_stats=None):
        """
        See base class method `ReportMgrBase.report_step`.
        """
        if train_stats is not None:
            self.log('Train perplexity: %g' % train_stats.ppl())
            self.log('Train accuracy: %g' % train_stats.accuracy())

            self.maybe_log_tensorboard(train_stats,
                                       "train",
                                       lr,
                                       patience,
                                       step)

        if valid_stats is not None:
            self.log('Validation perplexity: %g' % valid_stats.ppl())
            self.log('Validation accuracy: %g' % valid_stats.accuracy())

            self.maybe_log_tensorboard(valid_stats,
                                       "valid",
                                       lr,
                                       patience,
                                       step)