File size: 13,917 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use operations learned with learn_bpe.py to encode a new text.
The text will not be smaller, but use only a fixed vocabulary, with rare words
encoded as variable-length sequences of subword units.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
from __future__ import unicode_literals, division
import sys
import os
import inspect
import codecs
import io
import argparse
import re
import warnings
import random
# hack for python2/3 compatibility
from io import open
argparse.open = open
class BPE(object):
def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None):
codes.seek(0)
offset=1
# check version information
firstline = codes.readline()
if firstline.startswith('#version:'):
self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")])
offset += 1
else:
self.version = (0, 1)
codes.seek(0)
self.bpe_codes = [tuple(item.strip('\r\n ').split(' ')) for (n, item) in enumerate(codes) if (n < merges or merges == -1)]
for i, item in enumerate(self.bpe_codes):
if len(item) != 2:
sys.stderr.write('Error: invalid line {0} in BPE codes file: {1}\n'.format(i+offset, ' '.join(item)))
sys.stderr.write('The line should exist of exactly two subword units, separated by whitespace\n')
sys.exit(1)
# some hacking to deal with duplicates (only consider first instance)
self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))])
self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()])
self.separator = separator
self.vocab = vocab
self.glossaries = glossaries if glossaries else []
self.glossaries_regex = re.compile('^({})$'.format('|'.join(glossaries))) if glossaries else None
self.cache = {}
def process_line(self, line, dropout=0):
"""segment line, dealing with leading and trailing whitespace"""
out = ""
leading_whitespace = len(line)-len(line.lstrip('\r\n '))
if leading_whitespace:
out += line[:leading_whitespace]
out += self.segment(line, dropout)
trailing_whitespace = len(line)-len(line.rstrip('\r\n '))
if trailing_whitespace and trailing_whitespace != len(line):
out += line[-trailing_whitespace:]
return out
def segment(self, sentence, dropout=0):
"""segment single sentence (whitespace-tokenized string) with BPE encoding"""
segments = self.segment_tokens(sentence.strip('\r\n ').split(' '), dropout)
return ' '.join(segments)
def segment_tokens(self, tokens, dropout=0):
"""segment a sequence of tokens with BPE encoding"""
output = []
for word in tokens:
# eliminate double spaces
if not word:
continue
new_word = [out for segment in self._isolate_glossaries(word)
for out in encode(segment,
self.bpe_codes,
self.bpe_codes_reverse,
self.vocab,
self.separator,
self.version,
self.cache,
self.glossaries_regex,
dropout)]
output.append(new_word[0])
for item in new_word[1:]:
output.append("▁"+item)
# for item in new_word[:-1]:
# output.append(item + self.separator)
# output.append(new_word[-1])
return output
def _isolate_glossaries(self, word):
word_segments = [word]
for gloss in self.glossaries:
word_segments = [out_segments for segment in word_segments
for out_segments in isolate_glossary(segment, gloss)]
return word_segments
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('apply-bpe',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input file (default: standard input).")
parser.add_argument(
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH',
required=True,
help="File with BPE codes (created by learn_bpe.py).")
parser.add_argument(
'--merges', '-m', type=int, default=-1,
metavar='INT',
help="Use this many BPE operations (<= number of learned symbols)"+
"default: Apply all the learned merge operations")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file (default: standard output)")
parser.add_argument(
'--separator', '-s', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument(
'--vocabulary', type=argparse.FileType('r'), default=None,
metavar="PATH",
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.")
parser.add_argument(
'--vocabulary-threshold', type=int, default=None,
metavar="INT",
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV")
parser.add_argument(
'--dropout', type=float, default=0,
metavar="P",
help="Dropout BPE merge operations with probability P (Provilkov et al., 2019). Use this on training data only.")
parser.add_argument(
'--glossaries', type=str, nargs='+', default=None,
metavar="STR",
help="Glossaries. Words matching any of the words/regex provided in glossaries will not be affected "+
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords. "+
"Can be provided as a list of words/regex after the --glossaries argument. Enclose each regex in quotes.")
return parser
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries_regex=None, dropout=0):
"""Encode word based on list of BPE merge operations, which are applied consecutively
"""
if not dropout and orig in cache:
return cache[orig]
if glossaries_regex and glossaries_regex.match(orig):
cache[orig] = (orig,)
return (orig,)
if len(orig) == 1:
return orig
if version == (0, 1):
word = list(orig) + ['</w>']
elif version == (0, 2): # more consistent handling of word-final segments
word = list(orig[:-1]) + [orig[-1] + '</w>']
else:
raise NotImplementedError
while len(word) > 1:
# get list of symbol pairs; optionally apply dropout
pairs = [(bpe_codes[pair],i,pair) for (i,pair) in enumerate(zip(word, word[1:])) if (not dropout or random.random() > dropout) and pair in bpe_codes]
if not pairs:
break
#get first merge operation in list of BPE codes
bigram = min(pairs)[2]
# find start position of all pairs that we want to merge
positions = [i for (rank,i,pair) in pairs if pair == bigram]
i = 0
new_word = []
bigram = ''.join(bigram)
for j in positions:
# merges are invalid if they start before current position. This can happen if there are overlapping pairs: (x x x -> xx x)
if j < i:
continue
new_word.extend(word[i:j]) # all symbols before merged pair
new_word.append(bigram) # merged pair
i = j+2 # continue after merged pair
new_word.extend(word[i:]) # add all symbols until end of word
word = new_word
# don't print end-of-word symbols
if word[-1] == '</w>':
word = word[:-1]
elif word[-1].endswith('</w>'):
word[-1] = word[-1][:-4]
word = tuple(word)
if vocab:
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator)
cache[orig] = word
return word
def recursive_split(segment, bpe_codes, vocab, separator, final=False):
"""Recursively split segment into smaller units (by reversing BPE merges)
until all units are either in-vocabulary, or cannot be split futher."""
try:
if final:
left, right = bpe_codes[segment + '</w>']
right = right[:-4]
else:
left, right = bpe_codes[segment]
except:
#sys.stderr.write('cannot split {0} further.\n'.format(segment))
yield segment
return
if left + separator in vocab:
yield left
else:
for item in recursive_split(left, bpe_codes, vocab, separator, False):
yield item
if (final and right in vocab) or (not final and right + separator in vocab):
yield right
else:
for item in recursive_split(right, bpe_codes, vocab, separator, final):
yield item
def check_vocab_and_split(orig, bpe_codes, vocab, separator):
"""Check for each segment in word if it is in-vocabulary,
and segment OOV segments into smaller units by reversing the BPE merge operations"""
out = []
for segment in orig[:-1]:
if segment + separator in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, False):
out.append(item)
segment = orig[-1]
if segment in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, True):
out.append(item)
return out
def read_vocabulary(vocab_file, threshold):
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold.
"""
vocabulary = set()
for line in vocab_file:
word, freq = line.strip('\r\n ').split(' ')
freq = int(freq)
if threshold == None or freq >= threshold:
vocabulary.add(word)
return vocabulary
def isolate_glossary(word, glossary):
"""
Isolate a glossary present inside a word.
Returns a list of subwords. In which all 'glossary' glossaries are isolated
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is:
['1934', 'USA', 'B', 'USA']
"""
# regex equivalent of (if word == glossary or glossary not in word)
if re.match('^'+glossary+'$', word) or not re.search(glossary, word):
return [word]
else:
segments = re.split(r'({})'.format(glossary), word)
segments, ending = segments[:-1], segments[-1]
segments = list(filter(None, segments)) # Remove empty strings in regex group.
return segments + [ending.strip('\r\n ')] if ending != '' else segments
if __name__ == '__main__':
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
newdir = os.path.join(currentdir, 'subword_nmt')
if os.path.isdir(newdir):
warnings.simplefilter('default')
warnings.warn(
"this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir),
DeprecationWarning
)
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True)
parser = create_parser()
args = parser.parse_args()
# read/write files as UTF-8
args.codes = codecs.open(args.codes.name, encoding='utf-8')
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
if args.vocabulary:
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
if args.vocabulary:
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold)
else:
vocabulary = None
if sys.version_info < (3, 0):
args.separator = args.separator.decode('UTF-8')
if args.glossaries:
args.glossaries = [g.decode('UTF-8') for g in args.glossaries]
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries)
for line in args.input:
args.output.write(bpe.process_line(line, args.dropout))
|