File size: 31,110 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
/**
* Common lossy counting phrase extraction functionality implementation.
*
* Note: The bulk of this unit is based on Philipp Koehn's code from
* phrase-extract/extract.cpp.
*
* (C) Moses: http://www.statmt.org/moses/
* (C) Ceslav Przywara, UFAL MFF UK, 2011
*
* $Id$
*/
#include <iostream>
#include <iomanip>
#include <sstream>
#include "phrase-extract.h"
#include "ISS.h"
// I'm using my own version of SafeGetline (without "using namespace std;"):
#include "SafeGetline.h"
#define LINE_MAX_LENGTH 60000
//////// Helping functions ////////
// For sorted output.
typedef std::pair<indexed_phrases_pair_t, PhrasePairsLossyCounter::frequency_t> output_pair_t;
typedef std::vector<output_pair_t> output_vector_t;
class PhraseComp {
/** @var If true, sort by target phrase first. */
bool _inverted;
bool compareAlignments(const indexed_phrases_pair_t& a, const indexed_phrases_pair_t& b);
int comparePhrases(const indexed_phrases_pair_t::phrase_t& a, const indexed_phrases_pair_t::phrase_t& b);
public:
PhraseComp(bool inverted): _inverted(inverted) {}
bool operator()(const output_pair_t& a, const output_pair_t& b);
};
void processSortedOutput(OutputProcessor& processor);
void processUnsortedOutput(OutputProcessor& processor);
void flushPhrasePair(OutputProcessor& processor, const indexed_phrases_pair_t& indexedPhrasePair, PhrasePairsLossyCounter::frequency_t frequency, int mode);
//////// Define variables declared as extern in the header /////////////////////
bool allModelsOutputFlag = false;
bool wordModel = false; // IBM word model.
REO_MODEL_TYPE wordType = REO_MSD;
bool phraseModel = false; // Std phrase-based model.
REO_MODEL_TYPE phraseType = REO_MSD;
bool hierModel = false; // Hierarchical model.
REO_MODEL_TYPE hierType = REO_MSD;
int maxPhraseLength = 0; // Eg. 7
bool translationFlag = true; // Generate extract and extract.inv
bool orientationFlag = false; // Ordering info needed?
bool sortedOutput = false; // Sort output?
LossyCountersVector lossyCounters;
#ifdef GET_COUNTS_ONLY
std::vector<size_t> phrasePairsCounters;
#endif
//////// Internal module variables /////////////////////////////////////////////
IndexedStringsStorage<word_index_t> strings;
IndexedStringsStorage<orientation_info_index_t> orientations;
//////// Untouched Philipp Koehn's code :) /////////////////////////////////////
REO_POS getOrientWordModel(SentenceAlignment & sentence, REO_MODEL_TYPE modelType,
bool connectedLeftTop, bool connectedRightTop,
int startF, int endF, int startE, int endE, int countF, int zero, int unit,
bool (*ge)(int, int), bool (*lt)(int, int) )
{
if( connectedLeftTop && !connectedRightTop)
return LEFT;
if(modelType == REO_MONO)
return UNKNOWN;
if (!connectedLeftTop && connectedRightTop)
return RIGHT;
if(modelType == REO_MSD)
return UNKNOWN;
for(int indexF=startF-2*unit; (*ge)(indexF, zero) && !connectedLeftTop; indexF=indexF-unit)
connectedLeftTop = isAligned(sentence, indexF, startE-unit);
for(int indexF=endF+2*unit; (*lt)(indexF,countF) && !connectedRightTop; indexF=indexF+unit)
connectedRightTop = isAligned(sentence, indexF, startE-unit);
if(connectedLeftTop && !connectedRightTop)
return DRIGHT;
else if(!connectedLeftTop && connectedRightTop)
return DLEFT;
return UNKNOWN;
}
// to be called with countF-1 instead of countF
REO_POS getOrientPhraseModel (SentenceAlignment & sentence, REO_MODEL_TYPE modelType,
bool connectedLeftTop, bool connectedRightTop,
int startF, int endF, int startE, int endE, int countF, int zero, int unit,
bool (*ge)(int, int), bool (*lt)(int, int),
const HSentenceVertices & inBottomRight, const HSentenceVertices & inBottomLeft)
{
HSentenceVertices::const_iterator it;
if((connectedLeftTop && !connectedRightTop) ||
//(startE == 0 && startF == 0) ||
//(startE == sentence.target.size()-1 && startF == sentence.source.size()-1) ||
((it = inBottomRight.find(startE - unit)) != inBottomRight.end() &&
it->second.find(startF-unit) != it->second.end()))
return LEFT;
if(modelType == REO_MONO)
return UNKNOWN;
if((!connectedLeftTop && connectedRightTop) ||
((it = inBottomLeft.find(startE - unit)) != inBottomLeft.end() && it->second.find(endF + unit) != it->second.end()))
return RIGHT;
if(modelType == REO_MSD)
return UNKNOWN;
connectedLeftTop = false;
for(int indexF=startF-2*unit; (*ge)(indexF, zero) && !connectedLeftTop; indexF=indexF-unit)
if(connectedLeftTop = (it = inBottomRight.find(startE - unit)) != inBottomRight.end() &&
it->second.find(indexF) != it->second.end())
return DRIGHT;
connectedRightTop = false;
for(int indexF=endF+2*unit; (*lt)(indexF, countF) && !connectedRightTop; indexF=indexF+unit)
if(connectedRightTop = (it = inBottomLeft.find(startE - unit)) != inBottomRight.end() &&
it->second.find(indexF) != it->second.end())
return DLEFT;
return UNKNOWN;
}
// to be called with countF-1 instead of countF
REO_POS getOrientHierModel (SentenceAlignment & sentence, REO_MODEL_TYPE modelType,
bool connectedLeftTop, bool connectedRightTop,
int startF, int endF, int startE, int endE, int countF, int zero, int unit,
bool (*ge)(int, int), bool (*lt)(int, int),
const HSentenceVertices & inBottomRight, const HSentenceVertices & inBottomLeft,
const HSentenceVertices & outBottomRight, const HSentenceVertices & outBottomLeft,
REO_POS phraseOrient)
{
HSentenceVertices::const_iterator it;
if(phraseOrient == LEFT ||
(connectedLeftTop && !connectedRightTop) ||
// (startE == 0 && startF == 0) ||
//(startE == sentence.target.size()-1 && startF == sentence.source.size()-1) ||
((it = inBottomRight.find(startE - unit)) != inBottomRight.end() &&
it->second.find(startF-unit) != it->second.end()) ||
((it = outBottomRight.find(startE - unit)) != outBottomRight.end() &&
it->second.find(startF-unit) != it->second.end()))
return LEFT;
if(modelType == REO_MONO)
return UNKNOWN;
if(phraseOrient == RIGHT ||
(!connectedLeftTop && connectedRightTop) ||
((it = inBottomLeft.find(startE - unit)) != inBottomLeft.end() &&
it->second.find(endF + unit) != it->second.end()) ||
((it = outBottomLeft.find(startE - unit)) != outBottomLeft.end() &&
it->second.find(endF + unit) != it->second.end()))
return RIGHT;
if(modelType == REO_MSD)
return UNKNOWN;
if(phraseOrient != UNKNOWN)
return phraseOrient;
connectedLeftTop = false;
for(int indexF=startF-2*unit; (*ge)(indexF, zero) && !connectedLeftTop; indexF=indexF-unit) {
if((connectedLeftTop = (it = inBottomRight.find(startE - unit)) != inBottomRight.end() &&
it->second.find(indexF) != it->second.end()) ||
(connectedLeftTop = (it = outBottomRight.find(startE - unit)) != outBottomRight.end() &&
it->second.find(indexF) != it->second.end()))
return DRIGHT;
}
connectedRightTop = false;
for(int indexF=endF+2*unit; (*lt)(indexF, countF) && !connectedRightTop; indexF=indexF+unit) {
if((connectedRightTop = (it = inBottomLeft.find(startE - unit)) != inBottomRight.end() &&
it->second.find(indexF) != it->second.end()) ||
(connectedRightTop = (it = outBottomLeft.find(startE - unit)) != outBottomRight.end() &&
it->second.find(indexF) != it->second.end()))
return DLEFT;
}
return UNKNOWN;
}
void insertVertex( HSentenceVertices & corners, int x, int y )
{
std::set<int> tmp;
tmp.insert(x);
std::pair< HSentenceVertices::iterator, bool > ret = corners.insert( std::pair<int, std::set<int> > (y, tmp) );
if(ret.second == false) {
ret.first->second.insert(x);
}
}
void insertPhraseVertices(
HSentenceVertices & topLeft,
HSentenceVertices & topRight,
HSentenceVertices & bottomLeft,
HSentenceVertices & bottomRight,
int startF, int startE, int endF, int endE)
{
insertVertex(topLeft, startF, startE);
insertVertex(topRight, endF, startE);
insertVertex(bottomLeft, startF, endE);
insertVertex(bottomRight, endF, endE);
}
std::string getOrientString(REO_POS orient, REO_MODEL_TYPE modelType)
{
switch(orient) {
case LEFT:
return "mono";
break;
case RIGHT:
return "swap";
break;
case DRIGHT:
return "dright";
break;
case DLEFT:
return "dleft";
break;
case UNKNOWN:
switch(modelType) {
case REO_MONO:
return "nomono";
break;
case REO_MSD:
return "other";
break;
case REO_MSLR:
return "dright";
break;
}
break;
}
}
bool ge(int first, int second)
{
return first >= second;
}
bool le(int first, int second)
{
return first <= second;
}
bool lt(int first, int second)
{
return first < second;
}
bool isAligned ( SentenceAlignment &sentence, int fi, int ei )
{
if (ei == -1 && fi == -1)
return true;
if (ei <= -1 || fi <= -1)
return false;
if (ei == sentence.target.size() && fi == sentence.source.size())
return true;
if (ei >= sentence.target.size() || fi >= sentence.source.size())
return false;
for(int i=0; i<sentence.alignedToT[ei].size(); i++)
if (sentence.alignedToT[ei][i] == fi)
return true;
return false;
}
//////// END OF untouched Philipp Koehn's code :) //////////////////////////////
/////// Slightly modified Philipp Koehn's code :) //////////////////////////////
void extract(SentenceAlignment &sentence) {
int countE = sentence.target.size();
int countF = sentence.source.size();
HPhraseVector inboundPhrases;
HSentenceVertices inTopLeft;
HSentenceVertices inTopRight;
HSentenceVertices inBottomLeft;
HSentenceVertices inBottomRight;
HSentenceVertices outTopLeft;
HSentenceVertices outTopRight;
HSentenceVertices outBottomLeft;
HSentenceVertices outBottomRight;
HSentenceVertices::const_iterator it;
bool relaxLimit = hierModel;
bool buildExtraStructure = phraseModel || hierModel;
// check alignments for target phrase startE...endE
// loop over extracted phrases which are compatible with the word-alignments
for (int startE = 0; startE < countE; startE++) {
for (
int endE = startE;
((endE < countE) && (relaxLimit || (endE < (startE + maxPhraseLength))));
endE++
) {
int minF = 9999;
int maxF = -1;
std::vector< int > usedF = sentence.alignedCountS;
for (int ei = startE; ei <= endE; ei++) {
for (int i = 0; i < sentence.alignedToT[ei].size(); i++) {
int fi = sentence.alignedToT[ei][i];
if (fi < minF) {
minF = fi;
}
if (fi > maxF) {
maxF = fi;
}
usedF[ fi ]--;
}
}
if (maxF >= 0 && // aligned to any source words at all
(relaxLimit || maxF-minF < maxPhraseLength)) { // source phrase within limits
// check if source words are aligned to out of bound target words
bool out_of_bounds = false;
for (int fi=minF; fi<=maxF && !out_of_bounds; fi++) {
if (usedF[fi]>0) {
// cout << "ouf of bounds: " << fi << "\n";
out_of_bounds = true;
}
}
// cout << "doing if for ( " << minF << "-" << maxF << ", " << startE << "," << endE << ")\n";
if (!out_of_bounds) {
// start point of source phrase may retreat over unaligned
for (int startF=minF;
(startF>=0 &&
(relaxLimit || startF>maxF-maxPhraseLength) && // within length limit
(startF==minF || sentence.alignedCountS[startF]==0)); // unaligned
startF--
)
// end point of source phrase may advance over unaligned
for (int endF=maxF;
(endF<countF &&
(relaxLimit || endF<startF+maxPhraseLength) && // within length limit
(endF==maxF || sentence.alignedCountS[endF]==0)); // unaligned
endF++
) { // at this point we have extracted a phrase
if (buildExtraStructure) { // phrase || hier
if (endE-startE < maxPhraseLength && endF-startF < maxPhraseLength) { // within limit
inboundPhrases.push_back(
HPhrase(HPhraseVertex(startF,startE), HPhraseVertex(endF,endE))
);
insertPhraseVertices(
inTopLeft, inTopRight, inBottomLeft, inBottomRight,
startF, startE, endF, endE
);
} else {
insertPhraseVertices(
outTopLeft, outTopRight, outBottomLeft, outBottomRight,
startF, startE, endF, endE
);
}
} else {
std::string orientationInfo = "";
if (orientationFlag && wordModel) { // Added orientationFlag check.
REO_POS wordPrevOrient, wordNextOrient;
bool connectedLeftTopP = isAligned( sentence, startF-1, startE-1 );
bool connectedRightTopP = isAligned( sentence, endF+1, startE-1 );
bool connectedLeftTopN = isAligned( sentence, endF+1, endE+1 );
bool connectedRightTopN = isAligned( sentence, startF-1, endE+1 );
wordPrevOrient = getOrientWordModel(sentence, wordType, connectedLeftTopP, connectedRightTopP, startF, endF, startE, endE, countF, 0, 1, &ge, <);
wordNextOrient = getOrientWordModel(sentence, wordType, connectedLeftTopN, connectedRightTopN, endF, startF, endE, startE, 0, countF, -1, <, &ge);
orientationInfo += getOrientString(wordPrevOrient, wordType) + " " + getOrientString(wordNextOrient, wordType);
}
addPhrase(sentence, startE, endE, startF, endF, orientationInfo);
}
}
}
}
}
} // end of main for loop
if (buildExtraStructure) { // phrase || hier
std::string orientationInfo = "";
REO_POS wordPrevOrient, wordNextOrient, phrasePrevOrient, phraseNextOrient, hierPrevOrient, hierNextOrient;
for (int i = 0; i < inboundPhrases.size(); i++) {
int startF = inboundPhrases[i].first.first;
int startE = inboundPhrases[i].first.second;
int endF = inboundPhrases[i].second.first;
int endE = inboundPhrases[i].second.second;
if ( orientationFlag ) { // Added orientationFlag check.
bool connectedLeftTopP = isAligned( sentence, startF-1, startE-1 );
bool connectedRightTopP = isAligned( sentence, endF+1, startE-1 );
bool connectedLeftTopN = isAligned( sentence, endF+1, endE+1 );
bool connectedRightTopN = isAligned( sentence, startF-1, endE+1 );
if (wordModel) {
wordPrevOrient = getOrientWordModel(sentence, wordType,
connectedLeftTopP, connectedRightTopP,
startF, endF, startE, endE, countF, 0, 1,
&ge, <);
wordNextOrient = getOrientWordModel(sentence, wordType,
connectedLeftTopN, connectedRightTopN,
endF, startF, endE, startE, 0, countF, -1,
<, &ge);
}
if (phraseModel) {
phrasePrevOrient = getOrientPhraseModel(sentence, phraseType,
connectedLeftTopP, connectedRightTopP,
startF, endF, startE, endE, countF-1, 0, 1, &ge, <, inBottomRight, inBottomLeft);
phraseNextOrient = getOrientPhraseModel(sentence, phraseType,
connectedLeftTopN, connectedRightTopN,
endF, startF, endE, startE, 0, countF-1, -1, <, &ge, inBottomLeft, inBottomRight);
} else {
phrasePrevOrient = phraseNextOrient = UNKNOWN;
}
if(hierModel) {
hierPrevOrient = getOrientHierModel(sentence, hierType,
connectedLeftTopP, connectedRightTopP,
startF, endF, startE, endE, countF-1, 0, 1, &ge, <, inBottomRight, inBottomLeft, outBottomRight, outBottomLeft, phrasePrevOrient);
hierNextOrient = getOrientHierModel(sentence, hierType,
connectedLeftTopN, connectedRightTopN,
endF, startF, endE, startE, 0, countF-1, -1, <, &ge, inBottomLeft, inBottomRight, outBottomLeft, outBottomRight, phraseNextOrient);
}
orientationInfo = ((wordModel)? getOrientString(wordPrevOrient, wordType) + " " + getOrientString(wordNextOrient, wordType) : "") + " | " +
((phraseModel)? getOrientString(phrasePrevOrient, phraseType) + " " + getOrientString(phraseNextOrient, phraseType) : "") + " | " +
((hierModel)? getOrientString(hierPrevOrient, hierType) + " " + getOrientString(hierNextOrient, hierType) : "");
}
addPhrase(sentence, startE, endE, startF, endF, orientationInfo);
} // end of for loop through inbound phrases
} // end if buildExtraStructure
} // end of extract()
/**
* @param sentence
* @param startE
* @param endE
* @param startF
* @param endF
* @param orientationInfo
*/
void addPhrase(SentenceAlignment &sentence, int startE, int endE, int startF, int endF, std::string &orientationInfo) {
#ifdef GET_COUNTS_ONLY
// Just get the length of phrase pair (which is now defined as maximum of the two).
phrasePairsCounters[std::max(endF - startF, endE - startE) + 1] += 1; // Don't forget +1 (span is inclusive)!
#else
alignment_t alignment;
// alignment
for (int ei = startE; ei <= endE; ++ei) {
for (int i = 0; i < sentence.alignedToT[ei].size(); ++i) {
int fi = sentence.alignedToT[ei][i];
alignment.push_back(alignment_t::value_type(fi-startF, ei-startE));
}
}
indexed_phrases_pair_t::phrase_t srcPhraseIndices, tgtPhraseIndices;
// source phrase
for (int fi = startF; fi <= endF; ++fi) {
srcPhraseIndices.push_back(strings.put(sentence.source[fi].c_str()));
}
// target phrase
for (int ei = startE; ei <= endE; ++ei) {
tgtPhraseIndices.push_back(strings.put(sentence.target[ei].c_str()));
}
// TODO: Allow for switching between min and max here.
size_t idx = std::max(srcPhraseIndices.size(), tgtPhraseIndices.size());
// Add phrase pair.
lossyCounters[idx]->lossyCounter.add(indexed_phrases_pair_t(srcPhraseIndices, tgtPhraseIndices, orientations.put(orientationInfo.c_str()), alignment));
//
if ( lossyCounters[idx]->lossyCounter.aboutToPrune() ) {
// Next addition will lead to pruning, inform:
std::cerr << 'P' << idx << std::flush;
}
#endif
} // end of addPhrase()
/////// Lossy Counting related code ////////////////////////////////////////////
void readInput(std::istream& eFile, std::istream& fFile, std::istream& aFile) {
// Note: moved out of the loop.
char englishString[LINE_MAX_LENGTH];
char foreignString[LINE_MAX_LENGTH];
char alignmentString[LINE_MAX_LENGTH];
int i = 0;
while(true) {
// Report progress?
if (++i%10000 == 0) std::cerr << "." << std::flush;
SAFE_GETLINE(eFile, englishString, LINE_MAX_LENGTH, '\n', __FILE__);
if (eFile.eof()) break;
SAFE_GETLINE(fFile, foreignString, LINE_MAX_LENGTH, '\n', __FILE__);
SAFE_GETLINE(aFile, alignmentString, LINE_MAX_LENGTH, '\n', __FILE__);
SentenceAlignment sentence;
if (sentence.create(englishString, foreignString, alignmentString, i)) {
extract(sentence);
}
}
}
void processOutput(OutputProcessor& processor) {
if ( sortedOutput ) {
processSortedOutput(processor);
}
else {
processUnsortedOutput(processor);
}
}
bool PhraseComp::operator()(const output_pair_t& a, const output_pair_t& b) {
int cmp = _inverted ? comparePhrases(a.first.tgtPhrase(), b.first.tgtPhrase()) : comparePhrases(a.first.srcPhrase(), b.first.srcPhrase());
if ( cmp == 0 ) {
// First part of pairs matches, compare the second part.
cmp = _inverted ? comparePhrases(a.first.srcPhrase(), b.first.srcPhrase()) : comparePhrases(a.first.tgtPhrase(), b.first.tgtPhrase());
if ( cmp == 0 ) {
// Also second part matches, compare alignments.
return compareAlignments(a.first, b.first);
}
else {
return cmp < 0;
}
}
else {
return cmp < 0;
}
}
bool PhraseComp::compareAlignments(const indexed_phrases_pair_t& a, const indexed_phrases_pair_t& b) {
size_t aSize = a.alignmentLength();
size_t bSize = b.alignmentLength();
size_t min = std::min(aSize, bSize);
const indexed_phrases_pair_t::alignment_point_t * aAlignment = a.alignmentData();
const indexed_phrases_pair_t::alignment_point_t * bAlignment = b.alignmentData();
int cmp = 0;
for ( size_t i = 0; i < min; ++i ) {
// Important: alignments have to be eventually inverted as well!
if ( _inverted ) {
// Inverted = compare TGT phrase alignment points first.
cmp = memcmp(aAlignment + i*2 + 1, bAlignment + i*2 + 1, sizeof(indexed_phrases_pair_t::alignment_point_t));
}
else{
// NOT inverted = compare SRC phrase alignment points first.
cmp = memcmp(aAlignment+ i*2, bAlignment + i*2, sizeof(indexed_phrases_pair_t::alignment_point_t));
}
if ( cmp == 0 ) {
if ( _inverted ) {
// Inverted = compare SRC phrase alignment points second.
cmp = memcmp(aAlignment + i*2, bAlignment + i*2, sizeof(indexed_phrases_pair_t::alignment_point_t));
}
else{
// NOT inverted = compare TGT phrase alignment points second.
cmp = memcmp(aAlignment + i*2 + 1, bAlignment + i*2 + 1, sizeof(indexed_phrases_pair_t::alignment_point_t));
}
if ( cmp != 0 ) {
return cmp < 0;
} // Otherwise continue looping.
}
else {
return cmp < 0;
}
}
// Note: LC_ALL=C GNU sort treats shorter item as lesser than longer one.
return (cmp == 0) ? (aSize < bSize) : (cmp < 0);
}
int PhraseComp::comparePhrases(const indexed_phrases_pair_t::phrase_t& a, const indexed_phrases_pair_t::phrase_t& b) {
size_t aSize = a.size();
size_t bSize = b.size();
size_t min = std::min(aSize, bSize);
int cmp = 0;
for ( size_t i = 0; i < min; ++i ) {
cmp = strcmp(strings.get(a[i]), strings.get(b[i]));
if ( cmp != 0 ) {
return cmp;
}
}
if ( aSize == bSize ) {
return 0;
}
if ( aSize < bSize ) {
return strcmp("|||", strings.get(b[min]));
}
else {
return strcmp(strings.get(a[min]), "|||");
}
}
void processSortedOutput(OutputProcessor& processor) {
output_vector_t output;
LossyCountersVector::value_type current = NULL, prev = NULL;
for ( size_t i = 1; i < lossyCounters.size(); ++i ) { // Intentionally skip 0.
current = lossyCounters[i];
if ( current != prev ) {
PhrasePairsLossyCounter& lossyCounter = current->lossyCounter;
for ( PhrasePairsLossyCounter::erasing_iterator phraseIter = lossyCounter.beginErase(); phraseIter != lossyCounter.endErase(); ++phraseIter ) {
// Store and...
output.push_back(std::make_pair(phraseIter.item(), phraseIter.frequency()));
// ...update counters.
current->outputMass += phraseIter.frequency();
current->outputSize += 1;
}
//
prev = current;
//delete current;
}
}
// Sort by source phrase.
std::sort(output.begin(), output.end(), PhraseComp(false));
// Print.
for ( output_vector_t::const_iterator iter = output.begin(); iter != output.end(); ++iter ) {
flushPhrasePair(processor, iter->first, iter->second, 1);
}
// Sort by target phrase.
std::sort(output.begin(), output.end(), PhraseComp(true));
// Print.
for ( output_vector_t::const_iterator iter = output.begin(); iter != output.end(); ++iter ) {
flushPhrasePair(processor, iter->first, iter->second, -1);
}
}
void processUnsortedOutput(OutputProcessor& processor) {
LossyCountersVector::value_type current = NULL, prev = NULL;
for ( size_t i = 1; i < lossyCounters.size(); ++i ) { // Intentionally skip 0.
current = lossyCounters[i];
if ( current != prev ) {
const PhrasePairsLossyCounter& lossyCounter = current->lossyCounter;
for ( PhrasePairsLossyCounter::const_iterator phraseIter = lossyCounter.begin(); phraseIter != lossyCounter.end(); ++phraseIter ) {
// Flush and...
flushPhrasePair(processor, phraseIter.item(), phraseIter.frequency(), 0);
// ...update counters.
current->outputMass += phraseIter.frequency();
current->outputSize += 1;
}
//
prev = current;
}
}
}
void flushPhrasePair(OutputProcessor& processor, const indexed_phrases_pair_t& indexedPhrasePair, PhrasePairsLossyCounter::frequency_t frequency, int mode = 0) {
const indexed_phrases_pair_t::phrase_t srcPhraseIndices = indexedPhrasePair.srcPhrase();
const indexed_phrases_pair_t::phrase_t tgtPhraseIndices = indexedPhrasePair.tgtPhrase();
std::string srcPhrase, tgtPhrase;
for ( indexed_phrases_pair_t::phrase_t::const_iterator indexIter = srcPhraseIndices.begin(); indexIter != srcPhraseIndices.end(); ++indexIter ) {
srcPhrase += std::string(strings.get(*indexIter)) + " ";
}
srcPhrase.resize(srcPhrase.size() - 1); // Trim the trailing " "
for ( indexed_phrases_pair_t::phrase_t::const_iterator indexIter = tgtPhraseIndices.begin(); indexIter != tgtPhraseIndices.end(); ++indexIter ) {
tgtPhrase += std::string(strings.get(*indexIter)) + " ";
}
tgtPhrase.resize(tgtPhrase.size() - 1); // Trim the trailing " "
// Actual processing is done via call to functor:
processor(srcPhrase, tgtPhrase, orientations.get(indexedPhrasePair.orientationInfo()), indexedPhrasePair.alignment(), frequency, mode);
}
void printStats(void) {
// Total counters.
size_t outputMass = 0, outputSize = 0, N = 0;
const std::string hline = "####################################################################################################################";
std::cerr << "Lossy Counting Phrase Extraction statistics:" << std::endl;
// Print header: | 3 | 15 | 15 | 15 | 7 | 10 | 10 | 10 |
std::cerr
<< hline << std::endl
<< "# length # unique out # total out # total in (N) # out/in (%) # pos. thr. # neg. thr. # max. err. #" << std::endl
<< hline << std::endl;
LossyCountersVector::value_type current = NULL, prev = NULL;
size_t from = 1, to = 1;
for ( size_t i = 1; i <= lossyCounters.size(); ++i ) { // Intentionally skip 0, intentionally increment till == size().
current = (i < lossyCounters.size()) ? lossyCounters[i] : NULL;
if ( (current == NULL) || ((current != prev) && (prev != NULL)) ) {
// Time to print.
to = i-1;
// Increment overall stats.
outputMass += prev->outputMass;
outputSize += prev->outputSize;
N += prev->lossyCounter.count();
// Print.
if ( from == to ) {
std::cerr << "# " << std::setw(6) << to << " # ";
}
else {
std::stringstream strStr;
strStr << from << "-" << to;
std::cerr << "# " << std::setw(6) << strStr.str() << " # ";
}
// Print the rest of record.
std::cerr
<< std::setw(15) << prev->outputSize << " # "
<< std::setw(15) << prev->outputMass << " # "
<< std::setw(15) << prev->lossyCounter.count() << " # "
<< std::setw(10) << std::setprecision(4) << (static_cast<double>(prev->outputMass) / static_cast<double>(prev->lossyCounter.count())) * 100 << " # "
<< std::setw(10) << prev->lossyCounter.threshold(true) << " # "
<< std::setw(10) << prev->lossyCounter.threshold() << " # "
<< std::setw(10) << prev->lossyCounter.maxError() << " #"
<< std::endl << hline << std::endl;
from = i;
}
prev = current;
}
// Print summary:
std::cerr
<< "# TOTAL # "
<< std::setw(15) << outputSize << " # "
<< std::setw(15) << outputMass << " # "
<< std::setw(15) << N << " # "
<< std::setw(10) << std::setprecision(4) << (static_cast<double>(outputMass) / static_cast<double>(N)) * 100 << " #"
<< std::endl
<< "#############################################################################" << std::endl;
}
|