File size: 85,571 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
#include <map>
#include <boost/program_options.hpp>
#include <boost/algorithm/string.hpp>
#ifdef MPI_ENABLE
#include <boost/mpi.hpp>
namespace mpi = boost::mpi;
#endif
#include "Main.h"
#include "Optimiser.h"
#include "Hildreth.h"
#include "HypothesisQueue.h"
#include "moses/StaticData.h"
#include "moses/ScoreComponentCollection.h"
#include "moses/ThreadPool.h"
#include "mert/BleuScorer.h"
#include "moses/FeatureVector.h"
#include "moses/FF/WordTranslationFeature.h"
#include "moses/FF/PhrasePairFeature.h"
#include "moses/FF/WordPenaltyProducer.h"
#include "moses/LM/Base.h"
#include "util/random.hh"
using namespace Mira;
using namespace std;
using namespace Moses;
namespace po = boost::program_options;
int main(int argc, char** argv)
{
util::rand_init();
size_t rank = 0;
size_t size = 1;
#ifdef MPI_ENABLE
mpi::environment env(argc,argv);
mpi::communicator world;
rank = world.rank();
size = world.size();
#endif
bool help;
int verbosity;
string mosesConfigFile;
string inputFile;
vector<string> referenceFiles;
vector<string> mosesConfigFilesFolds, inputFilesFolds, referenceFilesFolds;
// string coreWeightFile, startWeightFile;
size_t epochs;
string learner;
bool shuffle;
size_t mixingFrequency;
size_t weightDumpFrequency;
string weightDumpStem;
bool scale_margin;
bool scale_update;
size_t n;
size_t batchSize;
bool distinctNbest;
bool accumulateWeights;
float historySmoothing;
bool scaleByInputLength, scaleByAvgInputLength;
bool scaleByInverseLength, scaleByAvgInverseLength;
float scaleByX;
float slack;
bool averageWeights;
bool weightConvergence;
float learning_rate;
float mira_learning_rate;
float perceptron_learning_rate;
string decoder_settings;
float min_weight_change;
bool normaliseWeights, normaliseMargin;
bool print_feature_values;
bool historyBleu ;
bool sentenceBleu;
bool perceptron_update;
bool hope_fear;
bool model_hope_fear;
size_t hope_n, fear_n;
size_t bleu_smoothing_scheme;
float min_oracle_bleu;
float minBleuRatio, maxBleuRatio;
bool boost;
bool decode_hope, decode_fear, decode_model;
string decode_filename;
bool batchEqualsShard;
bool sparseAverage, dumpMixedWeights, sparseNoAverage;
int featureCutoff;
bool pruneZeroWeights;
bool printFeatureCounts, printNbestWithFeatures;
bool avgRefLength;
bool print_weights, print_core_weights, debug_model, scale_lm, scale_wp;
float scale_lm_factor, scale_wp_factor;
bool kbest;
string moses_src;
float sigmoidParam;
float bleuWeight, bleuWeight_hope, bleuWeight_fear;
bool bleu_weight_lm;
float bleu_weight_lm_factor;
bool l1_regularize, l2_regularize, l1_reg_sparse, l2_reg_sparse;
float l1_lambda, l2_lambda;
bool most_violated, most_violated_reg, all_violated, max_bleu_diff;
bool feature_confidence, signed_counts;
float decay_core, decay_sparse, core_r0, sparse_r0;
float bleu_weight_fear_factor;
bool hildreth;
float add2lm;
// compute real sentence Bleu scores on complete translations, disable Bleu feature
bool realBleu, disableBleuFeature;
bool rescaleSlack;
bool makePairs;
bool debug;
bool reg_on_every_mix;
size_t continue_epoch;
bool modelPlusBleu, simpleHistoryBleu;
po::options_description desc("Allowed options");
desc.add_options()
("continue-epoch", po::value<size_t>(&continue_epoch)->default_value(0), "Continue an interrupted experiment from this epoch on")
("freq-reg", po::value<bool>(®_on_every_mix)->default_value(false), "Regularize after every weight mixing")
("l1sparse", po::value<bool>(&l1_reg_sparse)->default_value(true), "L1-regularization for sparse weights only")
("l2sparse", po::value<bool>(&l2_reg_sparse)->default_value(true), "L2-regularization for sparse weights only")
("mv-reg", po::value<bool>(&most_violated_reg)->default_value(false), "Regularize most violated constraint")
("most-violated", po::value<bool>(&most_violated)->default_value(false), "Add most violated constraint")
("all-violated", po::value<bool>(&all_violated)->default_value(false), "Add all violated constraints")
("feature-confidence", po::value<bool>(&feature_confidence)->default_value(false), "Confidence-weighted learning")
("signed-counts", po::value<bool>(&signed_counts)->default_value(false), "Use signed feature counts for CWL")
("dbg", po::value<bool>(&debug)->default_value(true), "More debug output")
("make-pairs", po::value<bool>(&makePairs)->default_value(true), "Make pairs of hypotheses for 1slack")
("debug", po::value<bool>(&debug)->default_value(true), "More debug output")
("rescale-slack", po::value<bool>(&rescaleSlack)->default_value(false), "Rescale slack in 1-slack formulation")
("add2lm", po::value<float>(&add2lm)->default_value(0.0), "Add the specified amount to all LM weights")
("hildreth", po::value<bool>(&hildreth)->default_value(false), "Prefer Hildreth over analytical update")
("model-plus-bleu", po::value<bool>(&modelPlusBleu)->default_value(false), "Use the sum of model score and +/- bleu to select hope and fear translations")
("simple-history-bleu", po::value<bool>(&simpleHistoryBleu)->default_value(false), "Simple history Bleu")
("bleu-weight", po::value<float>(&bleuWeight)->default_value(1.0), "Bleu weight used in decoder objective")
("bw-hope", po::value<float>(&bleuWeight_hope)->default_value(-1.0), "Bleu weight used in decoder objective for hope")
("bw-fear", po::value<float>(&bleuWeight_fear)->default_value(-1.0), "Bleu weight used in decoder objective for fear")
("core-r0", po::value<float>(&core_r0)->default_value(1.0), "Start learning rate for core features")
("sparse-r0", po::value<float>(&sparse_r0)->default_value(1.0), "Start learning rate for sparse features")
("decay-core", po::value<float>(&decay_core)->default_value(0.01), "Decay for core feature learning rate")
("decay-sparse", po::value<float>(&decay_sparse)->default_value(0.01), "Decay for sparse feature learning rate")
("tie-bw-to-lm", po::value<bool>(&bleu_weight_lm)->default_value(true), "Make bleu weight depend on lm weight")
("bw-lm-factor", po::value<float>(&bleu_weight_lm_factor)->default_value(2.0), "Make bleu weight depend on lm weight by this factor")
("bw-factor-fear", po::value<float>(&bleu_weight_fear_factor)->default_value(1.0), "Multiply fear weight by this factor")
("accumulate-weights", po::value<bool>(&accumulateWeights)->default_value(false), "Accumulate and average weights over all epochs")
("average-weights", po::value<bool>(&averageWeights)->default_value(false), "Set decoder weights to average weights after each update")
("avg-ref-length", po::value<bool>(&avgRefLength)->default_value(false), "Use average reference length instead of shortest for BLEU score feature")
("batch-equals-shard", po::value<bool>(&batchEqualsShard)->default_value(false), "Batch size is equal to shard size (purely batch)")
("batch-size,b", po::value<size_t>(&batchSize)->default_value(1), "Size of batch that is send to optimiser for weight adjustments")
("bleu-smoothing-scheme", po::value<size_t>(&bleu_smoothing_scheme)->default_value(1), "Set a smoothing scheme for sentence-Bleu: +1 (1), +0.1 (2), papineni (3) (default:1)")
("boost", po::value<bool>(&boost)->default_value(false), "Apply boosting factor to updates on misranked candidates")
("config,f", po::value<string>(&mosesConfigFile), "Moses ini-file")
("configs-folds", po::value<vector<string> >(&mosesConfigFilesFolds), "Moses ini-files, one for each fold")
("debug-model", po::value<bool>(&debug_model)->default_value(false), "Get best model translation for debugging purposes")
("decode-hope", po::value<bool>(&decode_hope)->default_value(false), "Decode dev input set according to hope objective")
("decode-fear", po::value<bool>(&decode_fear)->default_value(false), "Decode dev input set according to fear objective")
("decode-model", po::value<bool>(&decode_model)->default_value(false), "Decode dev input set according to normal objective")
("decode-filename", po::value<string>(&decode_filename), "Filename for Bleu objective translations")
("decoder-settings", po::value<string>(&decoder_settings)->default_value(""), "Decoder settings for tuning runs")
("distinct-nbest", po::value<bool>(&distinctNbest)->default_value(true), "Use n-best list with distinct translations in inference step")
("dump-mixed-weights", po::value<bool>(&dumpMixedWeights)->default_value(false), "Dump mixed weights instead of averaged weights")
("epochs,e", po::value<size_t>(&epochs)->default_value(10), "Number of epochs")
("feature-cutoff", po::value<int>(&featureCutoff)->default_value(-1), "Feature cutoff as additional regularization for sparse features")
("fear-n", po::value<size_t>(&fear_n)->default_value(1), "Number of fear translations used")
("help", po::value(&help)->zero_tokens()->default_value(false), "Print this help message and exit")
("history-bleu", po::value<bool>(&historyBleu)->default_value(false), "Use 1best translations to update the history")
("history-smoothing", po::value<float>(&historySmoothing)->default_value(0.9), "Adjust the factor for history smoothing")
("hope-fear", po::value<bool>(&hope_fear)->default_value(true), "Use only hope and fear translations for optimisation (not model)")
("hope-n", po::value<size_t>(&hope_n)->default_value(2), "Number of hope translations used")
("input-file,i", po::value<string>(&inputFile), "Input file containing tokenised source")
("input-files-folds", po::value<vector<string> >(&inputFilesFolds), "Input files containing tokenised source, one for each fold")
("learner,l", po::value<string>(&learner)->default_value("mira"), "Learning algorithm")
("l1-lambda", po::value<float>(&l1_lambda)->default_value(0.0001), "Lambda for l1-regularization (w_i +/- lambda)")
("l2-lambda", po::value<float>(&l2_lambda)->default_value(0.01), "Lambda for l2-regularization (w_i * (1 - lambda))")
("l1-reg", po::value<bool>(&l1_regularize)->default_value(false), "L1-regularization")
("l2-reg", po::value<bool>(&l2_regularize)->default_value(false), "L2-regularization")
("min-bleu-ratio", po::value<float>(&minBleuRatio)->default_value(-1), "Set a minimum BLEU ratio between hope and fear")
("max-bleu-ratio", po::value<float>(&maxBleuRatio)->default_value(-1), "Set a maximum BLEU ratio between hope and fear")
("max-bleu-diff", po::value<bool>(&max_bleu_diff)->default_value(true), "Select hope/fear with maximum Bleu difference")
("min-oracle-bleu", po::value<float>(&min_oracle_bleu)->default_value(0), "Set a minimum oracle BLEU score")
("min-weight-change", po::value<float>(&min_weight_change)->default_value(0.0001), "Set minimum weight change for stopping criterion")
("mira-learning-rate", po::value<float>(&mira_learning_rate)->default_value(1), "Learning rate for MIRA (fixed or flexible)")
("mixing-frequency", po::value<size_t>(&mixingFrequency)->default_value(10), "How often per epoch to mix weights, when using mpi")
("model-hope-fear", po::value<bool>(&model_hope_fear)->default_value(false), "Use model, hope and fear translations for optimisation")
("moses-src", po::value<string>(&moses_src)->default_value(""), "Moses source directory")
("nbest,n", po::value<size_t>(&n)->default_value(30), "Number of translations in n-best list")
("normalise-weights", po::value<bool>(&normaliseWeights)->default_value(false), "Whether to normalise the updated weights before passing them to the decoder")
("normalise-margin", po::value<bool>(&normaliseMargin)->default_value(false), "Normalise the margin: squash between 0 and 1")
("perceptron-learning-rate", po::value<float>(&perceptron_learning_rate)->default_value(0.01), "Perceptron learning rate")
("print-feature-values", po::value<bool>(&print_feature_values)->default_value(false), "Print out feature values")
("print-feature-counts", po::value<bool>(&printFeatureCounts)->default_value(false), "Print out feature values, print feature list with hope counts after 1st epoch")
("print-nbest-with-features", po::value<bool>(&printNbestWithFeatures)->default_value(false), "Print out feature values, print feature list with hope counts after 1st epoch")
("print-weights", po::value<bool>(&print_weights)->default_value(false), "Print out current weights")
("print-core-weights", po::value<bool>(&print_core_weights)->default_value(true), "Print out current core weights")
("prune-zero-weights", po::value<bool>(&pruneZeroWeights)->default_value(false), "Prune zero-valued sparse feature weights")
("reference-files,r", po::value<vector<string> >(&referenceFiles), "Reference translation files for training")
("reference-files-folds", po::value<vector<string> >(&referenceFilesFolds), "Reference translation files for training, one for each fold")
("kbest", po::value<bool>(&kbest)->default_value(true), "Select hope/fear pairs from a list of nbest translations")
("scale-by-inverse-length", po::value<bool>(&scaleByInverseLength)->default_value(false), "Scale BLEU by (history of) inverse input length")
("scale-by-input-length", po::value<bool>(&scaleByInputLength)->default_value(true), "Scale BLEU by (history of) input length")
("scale-by-avg-input-length", po::value<bool>(&scaleByAvgInputLength)->default_value(false), "Scale BLEU by average input length")
("scale-by-avg-inverse-length", po::value<bool>(&scaleByAvgInverseLength)->default_value(false), "Scale BLEU by average inverse input length")
("scale-by-x", po::value<float>(&scaleByX)->default_value(0.1), "Scale the BLEU score by value x")
("scale-lm", po::value<bool>(&scale_lm)->default_value(true), "Scale the language model feature")
("scale-factor-lm", po::value<float>(&scale_lm_factor)->default_value(0.5), "Scale the language model feature by this factor")
("scale-wp", po::value<bool>(&scale_wp)->default_value(false), "Scale the word penalty feature")
("scale-factor-wp", po::value<float>(&scale_wp_factor)->default_value(2), "Scale the word penalty feature by this factor")
("scale-margin", po::value<bool>(&scale_margin)->default_value(0), "Scale the margin by the Bleu score of the oracle translation")
("sentence-level-bleu", po::value<bool>(&sentenceBleu)->default_value(true), "Use a sentences level Bleu scoring function")
("shuffle", po::value<bool>(&shuffle)->default_value(false), "Shuffle input sentences before processing")
("sigmoid-param", po::value<float>(&sigmoidParam)->default_value(1), "y=sigmoidParam is the axis that this sigmoid approaches")
("slack", po::value<float>(&slack)->default_value(0.05), "Use slack in optimiser")
("sparse-average", po::value<bool>(&sparseAverage)->default_value(false), "Average weights by the number of processes")
("sparse-no-average", po::value<bool>(&sparseNoAverage)->default_value(false), "Don't average sparse weights, just sum")
("stop-weights", po::value<bool>(&weightConvergence)->default_value(true), "Stop when weights converge")
("verbosity,v", po::value<int>(&verbosity)->default_value(0), "Verbosity level")
("weight-dump-frequency", po::value<size_t>(&weightDumpFrequency)->default_value(2), "How often per epoch to dump weights (mpi)")
("weight-dump-stem", po::value<string>(&weightDumpStem)->default_value("weights"), "Stem of filename to use for dumping weights");
po::options_description cmdline_options;
cmdline_options.add(desc);
po::variables_map vm;
po::store(po::command_line_parser(argc, argv). options(cmdline_options).run(), vm);
po::notify(vm);
if (help) {
std::cout << "Usage: " + string(argv[0])
+ " -f mosesini-file -i input-file -r reference-file(s) [options]" << std::endl;
std::cout << desc << std::endl;
return 0;
}
const StaticData &staticData = StaticData::Instance();
bool trainWithMultipleFolds = false;
if (mosesConfigFilesFolds.size() > 0 || inputFilesFolds.size() > 0 || referenceFilesFolds.size() > 0) {
if (rank == 0)
cerr << "Training with " << mosesConfigFilesFolds.size() << " folds" << endl;
trainWithMultipleFolds = true;
}
if (dumpMixedWeights && (mixingFrequency != weightDumpFrequency)) {
cerr << "Set mixing frequency = weight dump frequency for dumping mixed weights!" << endl;
exit(1);
}
if ((sparseAverage || sparseNoAverage) && averageWeights) {
cerr << "Parameters --sparse-average 1/--sparse-no-average 1 and --average-weights 1 are incompatible (not implemented)" << endl;
exit(1);
}
if (trainWithMultipleFolds) {
if (!mosesConfigFilesFolds.size()) {
cerr << "Error: No moses ini files specified for training with folds" << endl;
exit(1);
}
if (!inputFilesFolds.size()) {
cerr << "Error: No input files specified for training with folds" << endl;
exit(1);
}
if (!referenceFilesFolds.size()) {
cerr << "Error: No reference files specified for training with folds" << endl;
exit(1);
}
} else {
if (mosesConfigFile.empty()) {
cerr << "Error: No moses ini file specified" << endl;
return 1;
}
if (inputFile.empty()) {
cerr << "Error: No input file specified" << endl;
return 1;
}
if (!referenceFiles.size()) {
cerr << "Error: No reference files specified" << endl;
return 1;
}
}
// load input and references
vector<string> inputSentences;
size_t inputSize = trainWithMultipleFolds? inputFilesFolds.size(): 0;
size_t refSize = trainWithMultipleFolds? referenceFilesFolds.size(): referenceFiles.size();
vector<vector<string> > inputSentencesFolds(inputSize);
vector<vector<string> > referenceSentences(refSize);
// number of cores for each fold
size_t coresPerFold = 0, myFold = 0;
if (trainWithMultipleFolds) {
if (mosesConfigFilesFolds.size() > size) {
cerr << "Number of cores has to be a multiple of the number of folds" << endl;
exit(1);
}
coresPerFold = size/mosesConfigFilesFolds.size();
if (size % coresPerFold > 0) {
cerr << "Number of cores has to be a multiple of the number of folds" << endl;
exit(1);
}
if (rank == 0)
cerr << "Number of cores per fold: " << coresPerFold << endl;
myFold = rank/coresPerFold;
cerr << "Rank " << rank << ", my fold: " << myFold << endl;
}
// NOTE: we do not actually need the references here, because we are reading them in from StaticData
if (trainWithMultipleFolds) {
if (!loadSentences(inputFilesFolds[myFold], inputSentencesFolds[myFold])) {
cerr << "Error: Failed to load input sentences from " << inputFilesFolds[myFold] << endl;
exit(1);
}
VERBOSE(1, "Rank " << rank << " reading inputs from " << inputFilesFolds[myFold] << endl);
if (!loadSentences(referenceFilesFolds[myFold], referenceSentences[myFold])) {
cerr << "Error: Failed to load reference sentences from " << referenceFilesFolds[myFold] << endl;
exit(1);
}
if (referenceSentences[myFold].size() != inputSentencesFolds[myFold].size()) {
cerr << "Error: Input file length (" << inputSentencesFolds[myFold].size() << ") != ("
<< referenceSentences[myFold].size() << ") reference file length (rank " << rank << ")" << endl;
exit(1);
}
VERBOSE(1, "Rank " << rank << " reading references from " << referenceFilesFolds[myFold] << endl);
} else {
if (!loadSentences(inputFile, inputSentences)) {
cerr << "Error: Failed to load input sentences from " << inputFile << endl;
return 1;
}
for (size_t i = 0; i < referenceFiles.size(); ++i) {
if (!loadSentences(referenceFiles[i], referenceSentences[i])) {
cerr << "Error: Failed to load reference sentences from "
<< referenceFiles[i] << endl;
return 1;
}
if (referenceSentences[i].size() != inputSentences.size()) {
cerr << "Error: Input file length (" << inputSentences.size() << ") != ("
<< referenceSentences[i].size() << ") length of reference file " << i
<< endl;
return 1;
}
}
}
if (scaleByAvgInputLength || scaleByInverseLength || scaleByAvgInverseLength)
scaleByInputLength = false;
if (historyBleu || simpleHistoryBleu) {
sentenceBleu = false;
cerr << "Using history Bleu. " << endl;
}
if (kbest) {
realBleu = true;
disableBleuFeature = true;
cerr << "Use kbest lists and real Bleu scores, disable Bleu feature.." << endl;
}
// initialise Moses
// add references to initialize Bleu feature
boost::trim(decoder_settings);
decoder_settings += " -mira -n-best-list - " + boost::lexical_cast<string>(n) + " distinct";
vector<string> decoder_params;
boost::split(decoder_params, decoder_settings, boost::is_any_of("\t "));
// bleu feature
decoder_params.push_back("-feature-add");
decoder_settings = "BleuScoreFeature tuneable=false references=";
if (trainWithMultipleFolds) {
decoder_settings += referenceFilesFolds[myFold];
} else {
decoder_settings += referenceFiles[0];
for (size_t i=1; i < referenceFiles.size(); ++i) {
decoder_settings += ",";
decoder_settings += referenceFiles[i];
}
}
decoder_params.push_back(decoder_settings);
string configFile = trainWithMultipleFolds? mosesConfigFilesFolds[myFold] : mosesConfigFile;
VERBOSE(1, "Rank " << rank << " reading config file from " << configFile << endl);
MosesDecoder* decoder = new MosesDecoder(configFile, verbosity, decoder_params.size(), decoder_params);
decoder->setBleuParameters(disableBleuFeature, sentenceBleu, scaleByInputLength, scaleByAvgInputLength,
scaleByInverseLength, scaleByAvgInverseLength,
scaleByX, historySmoothing, bleu_smoothing_scheme, simpleHistoryBleu);
bool chartDecoding = staticData.IsChart();
// Optionally shuffle the sentences
vector<size_t> order;
if (trainWithMultipleFolds) {
for (size_t i = 0; i < inputSentencesFolds[myFold].size(); ++i) {
order.push_back(i);
}
} else {
if (rank == 0) {
for (size_t i = 0; i < inputSentences.size(); ++i) {
order.push_back(i);
}
}
}
// initialise optimizer
Optimiser* optimiser = NULL;
if (learner == "mira") {
if (rank == 0) {
cerr << "Optimising using Mira" << endl;
cerr << "slack: " << slack << ", learning rate: " << mira_learning_rate << endl;
if (normaliseMargin)
cerr << "sigmoid parameter: " << sigmoidParam << endl;
}
optimiser = new MiraOptimiser(slack, scale_margin, scale_update, boost, normaliseMargin, sigmoidParam);
learning_rate = mira_learning_rate;
perceptron_update = false;
} else if (learner == "perceptron") {
if (rank == 0) {
cerr << "Optimising using Perceptron" << endl;
}
optimiser = new Perceptron();
learning_rate = perceptron_learning_rate;
perceptron_update = true;
model_hope_fear = false; // mira only
hope_fear = false; // mira only
n = 1;
hope_n = 1;
fear_n = 1;
} else {
cerr << "Error: Unknown optimiser: " << learner << endl;
return 1;
}
// resolve parameter dependencies
if (batchSize > 1 && perceptron_update) {
batchSize = 1;
cerr << "Info: Setting batch size to 1 for perceptron update" << endl;
}
if (hope_n == 0)
hope_n = n;
if (fear_n == 0)
fear_n = n;
if (model_hope_fear || kbest)
hope_fear = false; // is true by default
if (learner == "mira" && !(hope_fear || model_hope_fear || kbest)) {
cerr << "Error: Need to select one of parameters --hope-fear/--model-hope-fear/--kbest for mira update." << endl;
return 1;
}
#ifdef MPI_ENABLE
if (!trainWithMultipleFolds)
mpi::broadcast(world, order, 0);
#endif
// Create shards according to the number of processes used
vector<size_t> shard;
if (trainWithMultipleFolds) {
size_t shardSize = order.size()/coresPerFold;
size_t shardStart = (size_t) (shardSize * (rank % coresPerFold));
size_t shardEnd = shardStart + shardSize;
if (rank % coresPerFold == coresPerFold - 1) { // last rank of each fold
shardEnd = order.size();
shardSize = shardEnd - shardStart;
}
VERBOSE(1, "Rank: " << rank << ", shard size: " << shardSize << endl);
VERBOSE(1, "Rank: " << rank << ", shard start: " << shardStart << " shard end: " << shardEnd << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
batchSize = 1;
} else {
size_t shardSize = order.size() / size;
size_t shardStart = (size_t) (shardSize * rank);
size_t shardEnd = (size_t) (shardSize * (rank + 1));
if (rank == size - 1) {
shardEnd = order.size();
shardSize = shardEnd - shardStart;
}
VERBOSE(1, "Rank: " << rank << " Shard size: " << shardSize << endl);
VERBOSE(1, "Rank: " << rank << " Shard start: " << shardStart << " Shard end: " << shardEnd << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
if (batchEqualsShard)
batchSize = shardSize;
}
// get reference to feature functions
// const vector<FeatureFunction*> &featureFunctions = FeatureFunction::GetFeatureFunctions();
ScoreComponentCollection initialWeights = decoder->getWeights();
if (add2lm != 0) {
const std::vector<const StatefulFeatureFunction*> &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions();
for (size_t i = 0; i < statefulFFs.size(); ++i) {
const StatefulFeatureFunction *ff = statefulFFs[i];
const LanguageModel *lm = dynamic_cast<const LanguageModel*>(ff);
if (lm) {
float lmWeight = initialWeights.GetScoreForProducer(lm) + add2lm;
initialWeights.Assign(lm, lmWeight);
cerr << "Rank " << rank << ", add " << add2lm << " to lm weight." << endl;
}
}
}
if (normaliseWeights) {
initialWeights.L1Normalise();
cerr << "Rank " << rank << ", normalised initial weights: " << initialWeights << endl;
}
decoder->setWeights(initialWeights);
// set bleu weight to twice the size of the language model weight(s)
if (bleu_weight_lm) {
float lmSum = 0;
const std::vector<const StatefulFeatureFunction*> &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions();
for (size_t i = 0; i < statefulFFs.size(); ++i) {
const StatefulFeatureFunction *ff = statefulFFs[i];
const LanguageModel *lm = dynamic_cast<const LanguageModel*>(ff);
if (lm) {
lmSum += abs(initialWeights.GetScoreForProducer(lm));
}
}
bleuWeight = lmSum * bleu_weight_lm_factor;
if (!kbest) cerr << "Set bleu weight to lm weight * " << bleu_weight_lm_factor << endl;
}
// bleu weights can be set separately for hope and fear; otherwise they are both set to 'lm weight * bleu_weight_lm_factor'
if (bleuWeight_hope == -1) {
bleuWeight_hope = bleuWeight;
}
if (bleuWeight_fear == -1) {
bleuWeight_fear = bleuWeight;
}
bleuWeight_fear *= bleu_weight_fear_factor;
if (!kbest) {
cerr << "Bleu weight: " << bleuWeight << endl;
cerr << "Bleu weight fear: " << bleuWeight_fear << endl;
}
if (decode_hope || decode_fear || decode_model) {
size_t decode = 1;
if (decode_fear) decode = 2;
if (decode_model) decode = 3;
decodeHopeOrFear(rank, size, decode, decode_filename, inputSentences, decoder, n, bleuWeight);
}
//Main loop:
ScoreComponentCollection cumulativeWeights; // collect weights per epoch to produce an average
ScoreComponentCollection cumulativeWeightsBinary;
size_t numberOfUpdates = 0;
size_t numberOfUpdatesThisEpoch = 0;
time_t now;
time(&now);
cerr << "Rank " << rank << ", " << ctime(&now);
float avgInputLength = 0;
float sumOfInputs = 0;
size_t numberOfInputs = 0;
ScoreComponentCollection mixedWeights;
ScoreComponentCollection mixedWeightsPrevious;
ScoreComponentCollection mixedWeightsBeforePrevious;
ScoreComponentCollection mixedAverageWeights;
ScoreComponentCollection mixedAverageWeightsPrevious;
ScoreComponentCollection mixedAverageWeightsBeforePrevious;
bool stop = false;
// int sumStillViolatedConstraints;
float epsilon = 0.0001;
// Variables for feature confidence
ScoreComponentCollection confidenceCounts, mixedConfidenceCounts, featureLearningRates;
featureLearningRates.UpdateLearningRates(decay_core, decay_sparse, confidenceCounts, core_r0, sparse_r0); //initialise core learning rates
cerr << "Initial learning rates, core: " << core_r0 << ", sparse: " << sparse_r0 << endl;
for (size_t epoch = continue_epoch; epoch < epochs && !stop; ++epoch) {
if (shuffle) {
if (trainWithMultipleFolds || rank == 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", shuffling input sentences.." << endl;
RandomIndex rindex;
random_shuffle(order.begin(), order.end(), rindex);
}
#ifdef MPI_ENABLE
if (!trainWithMultipleFolds)
mpi::broadcast(world, order, 0);
#endif
// redo shards
if (trainWithMultipleFolds) {
size_t shardSize = order.size()/coresPerFold;
size_t shardStart = (size_t) (shardSize * (rank % coresPerFold));
size_t shardEnd = shardStart + shardSize;
if (rank % coresPerFold == coresPerFold - 1) { // last rank of each fold
shardEnd = order.size();
shardSize = shardEnd - shardStart;
}
VERBOSE(1, "Rank: " << rank << ", shard size: " << shardSize << endl);
VERBOSE(1, "Rank: " << rank << ", shard start: " << shardStart << " shard end: " << shardEnd << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
batchSize = 1;
} else {
size_t shardSize = order.size()/size;
size_t shardStart = (size_t) (shardSize * rank);
size_t shardEnd = (size_t) (shardSize * (rank + 1));
if (rank == size - 1) {
shardEnd = order.size();
shardSize = shardEnd - shardStart;
}
VERBOSE(1, "Shard size: " << shardSize << endl);
VERBOSE(1, "Rank: " << rank << " Shard start: " << shardStart << " Shard end: " << shardEnd << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
if (batchEqualsShard)
batchSize = shardSize;
}
}
// sum of violated constraints in an epoch
// sumStillViolatedConstraints = 0;
numberOfUpdatesThisEpoch = 0;
// Sum up weights over one epoch, final average uses weights from last epoch
if (!accumulateWeights) {
cumulativeWeights.ZeroAll();
cumulativeWeightsBinary.ZeroAll();
}
// number of weight dumps this epoch
size_t weightMixingThisEpoch = 0;
size_t weightEpochDump = 0;
size_t shardPosition = 0;
vector<size_t>::const_iterator sid = shard.begin();
while (sid != shard.end()) {
// feature values for hypotheses i,j (matrix: batchSize x 3*n x featureValues)
vector<vector<ScoreComponentCollection> > featureValues;
vector<vector<float> > bleuScores;
vector<vector<float> > modelScores;
// variables for hope-fear/perceptron setting
vector<vector<ScoreComponentCollection> > featureValuesHope;
vector<vector<ScoreComponentCollection> > featureValuesFear;
vector<vector<float> > bleuScoresHope;
vector<vector<float> > bleuScoresFear;
vector<vector<float> > modelScoresHope;
vector<vector<float> > modelScoresFear;
// get moses weights
ScoreComponentCollection mosesWeights = decoder->getWeights();
VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", weights: " << mosesWeights << endl);
if (historyBleu || simpleHistoryBleu) {
decoder->printBleuFeatureHistory(cerr);
}
// BATCHING: produce nbest lists for all input sentences in batch
vector<float> oracleBleuScores;
vector<float> oracleModelScores;
vector<vector<const Word*> > oneBests;
vector<ScoreComponentCollection> oracleFeatureValues;
vector<size_t> inputLengths;
vector<size_t> ref_ids;
size_t actualBatchSize = 0;
size_t examples_in_batch = 0;
bool skip_example = false;
for (size_t batchPosition = 0; batchPosition < batchSize && sid
!= shard.end(); ++batchPosition) {
string input;
if (trainWithMultipleFolds)
input = inputSentencesFolds[myFold][*sid];
else
input = inputSentences[*sid];
Moses::Sentence *sentence = new Sentence();
stringstream in(input + "\n");
const vector<FactorType> inputFactorOrder = staticData.GetInputFactorOrder();
sentence->Read(in,inputFactorOrder);
cerr << "\nRank " << rank << ", epoch " << epoch << ", input sentence " << *sid << ": \"";
sentence->Print(cerr);
cerr << "\"" << " (batch pos " << batchPosition << ")" << endl;
size_t current_input_length = (*sentence).GetSize();
if (epoch == 0 && (scaleByAvgInputLength || scaleByAvgInverseLength)) {
sumOfInputs += current_input_length;
++numberOfInputs;
avgInputLength = sumOfInputs/numberOfInputs;
decoder->setAvgInputLength(avgInputLength);
cerr << "Rank " << rank << ", epoch 0, average input length: " << avgInputLength << endl;
}
vector<ScoreComponentCollection> newFeatureValues;
vector<float> newScores;
if (model_hope_fear) {
featureValues.push_back(newFeatureValues);
bleuScores.push_back(newScores);
modelScores.push_back(newScores);
}
if (hope_fear || perceptron_update) {
featureValuesHope.push_back(newFeatureValues);
featureValuesFear.push_back(newFeatureValues);
bleuScoresHope.push_back(newScores);
bleuScoresFear.push_back(newScores);
modelScoresHope.push_back(newScores);
modelScoresFear.push_back(newScores);
if (historyBleu || simpleHistoryBleu || debug_model) {
featureValues.push_back(newFeatureValues);
bleuScores.push_back(newScores);
modelScores.push_back(newScores);
}
}
if (kbest) {
// for decoding
featureValues.push_back(newFeatureValues);
bleuScores.push_back(newScores);
modelScores.push_back(newScores);
// for storing selected examples
featureValuesHope.push_back(newFeatureValues);
featureValuesFear.push_back(newFeatureValues);
bleuScoresHope.push_back(newScores);
bleuScoresFear.push_back(newScores);
modelScoresHope.push_back(newScores);
modelScoresFear.push_back(newScores);
}
size_t ref_length;
float avg_ref_length;
if (print_weights)
cerr << "Rank " << rank << ", epoch " << epoch << ", current weights: " << mosesWeights << endl;
if (print_core_weights) {
cerr << "Rank " << rank << ", epoch " << epoch << ", current weights: ";
mosesWeights.PrintCoreFeatures();
cerr << endl;
}
// check LM weight
const std::vector<const StatefulFeatureFunction*> &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions();
for (size_t i = 0; i < statefulFFs.size(); ++i) {
const StatefulFeatureFunction *ff = statefulFFs[i];
const LanguageModel *lm = dynamic_cast<const LanguageModel*>(ff);
if (lm) {
float lmWeight = mosesWeights.GetScoreForProducer(lm);
cerr << "Rank " << rank << ", epoch " << epoch << ", lm weight: " << lmWeight << endl;
if (lmWeight <= 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: language model weight should never be <= 0." << endl;
mosesWeights.Assign(lm, 0.1);
cerr << "Rank " << rank << ", epoch " << epoch << ", assign lm weights of 0.1" << endl;
}
}
}
// select inference scheme
cerr << "Rank " << rank << ", epoch " << epoch << ", real Bleu? " << realBleu << endl;
if (hope_fear || perceptron_update) {
// HOPE
cerr << "Rank " << rank << ", epoch " << epoch << ", " << hope_n <<
"best hope translations" << endl;
vector< vector<const Word*> > outputHope = decoder->getNBest(input, *sid, hope_n, 1.0, bleuWeight_hope,
featureValuesHope[batchPosition], bleuScoresHope[batchPosition], modelScoresHope[batchPosition],
1, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
vector<const Word*> oracle = outputHope[0];
decoder->cleanup(chartDecoding);
ref_length = decoder->getClosestReferenceLength(*sid, oracle.size());
avg_ref_length = ref_length;
float hope_length_ratio = (float)oracle.size()/ref_length;
cerr << endl;
// count sparse features occurring in hope translation
featureValuesHope[batchPosition][0].IncrementSparseHopeFeatures();
vector<const Word*> bestModel;
if (debug_model || historyBleu || simpleHistoryBleu) {
// MODEL (for updating the history only, using dummy vectors)
cerr << "Rank " << rank << ", epoch " << epoch << ", 1best wrt model score (debug or history)" << endl;
vector< vector<const Word*> > outputModel = decoder->getNBest(input, *sid, n, 0.0, bleuWeight,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
1, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
bestModel = outputModel[0];
decoder->cleanup(chartDecoding);
cerr << endl;
ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
}
// FEAR
//float fear_length_ratio = 0;
float bleuRatioHopeFear = 0;
//int fearSize = 0;
cerr << "Rank " << rank << ", epoch " << epoch << ", " << fear_n << "best fear translations" << endl;
vector< vector<const Word*> > outputFear = decoder->getNBest(input, *sid, fear_n, -1.0, bleuWeight_fear,
featureValuesFear[batchPosition], bleuScoresFear[batchPosition], modelScoresFear[batchPosition],
1, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
vector<const Word*> fear = outputFear[0];
decoder->cleanup(chartDecoding);
ref_length = decoder->getClosestReferenceLength(*sid, fear.size());
avg_ref_length += ref_length;
avg_ref_length /= 2;
//fear_length_ratio = (float)fear.size()/ref_length;
//fearSize = (int)fear.size();
cerr << endl;
for (size_t i = 0; i < fear.size(); ++i)
delete fear[i];
// count sparse features occurring in fear translation
featureValuesFear[batchPosition][0].IncrementSparseFearFeatures();
// Bleu-related example selection
bool skip = false;
bleuRatioHopeFear = bleuScoresHope[batchPosition][0] / bleuScoresFear[batchPosition][0];
if (minBleuRatio != -1 && bleuRatioHopeFear < minBleuRatio)
skip = true;
if(maxBleuRatio != -1 && bleuRatioHopeFear > maxBleuRatio)
skip = true;
// sanity check
if (historyBleu || simpleHistoryBleu) {
if (bleuScores[batchPosition][0] > bleuScoresHope[batchPosition][0] &&
modelScores[batchPosition][0] > modelScoresHope[batchPosition][0]) {
if (abs(bleuScores[batchPosition][0] - bleuScoresHope[batchPosition][0]) > epsilon &&
abs(modelScores[batchPosition][0] - modelScoresHope[batchPosition][0]) > epsilon) {
cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: MODEL translation better than HOPE translation." << endl;
skip = true;
}
}
if (bleuScoresFear[batchPosition][0] > bleuScores[batchPosition][0] &&
modelScoresFear[batchPosition][0] > modelScores[batchPosition][0]) {
if (abs(bleuScoresFear[batchPosition][0] - bleuScores[batchPosition][0]) > epsilon &&
abs(modelScoresFear[batchPosition][0] - modelScores[batchPosition][0]) > epsilon) {
cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: FEAR translation better than MODEL translation." << endl;
skip = true;
}
}
}
if (bleuScoresFear[batchPosition][0] > bleuScoresHope[batchPosition][0]) {
if (abs(bleuScoresFear[batchPosition][0] - bleuScoresHope[batchPosition][0]) > epsilon) {
// check if it's an error or a warning
skip = true;
if (modelScoresFear[batchPosition][0] > modelScoresHope[batchPosition][0] && abs(modelScoresFear[batchPosition][0] - modelScoresHope[batchPosition][0]) > epsilon) {
cerr << "Rank " << rank << ", epoch " << epoch << ", ERROR: FEAR translation better than HOPE translation. (abs-diff: " << abs(bleuScoresFear[batchPosition][0] - bleuScoresHope[batchPosition][0]) << ")" <<endl;
} else {
cerr << "Rank " << rank << ", epoch " << epoch << ", WARNING: FEAR translation has better Bleu than HOPE translation. (abs-diff: " << abs(bleuScoresFear[batchPosition][0] - bleuScoresHope[batchPosition][0]) << ")" <<endl;
}
}
}
if (skip) {
cerr << "Rank " << rank << ", epoch " << epoch << ", skip example (" << hope_length_ratio << ", " << bleuRatioHopeFear << ").. " << endl;
featureValuesHope[batchPosition].clear();
featureValuesFear[batchPosition].clear();
bleuScoresHope[batchPosition].clear();
bleuScoresFear[batchPosition].clear();
if (historyBleu || simpleHistoryBleu || debug_model) {
featureValues[batchPosition].clear();
bleuScores[batchPosition].clear();
}
} else {
examples_in_batch++;
// needed for history
if (historyBleu || simpleHistoryBleu) {
inputLengths.push_back(current_input_length);
ref_ids.push_back(*sid);
oneBests.push_back(bestModel);
}
}
}
if (model_hope_fear) {
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best hope translations" << endl;
size_t oraclePos = featureValues[batchPosition].size();
decoder->getNBest(input, *sid, n, 1.0, bleuWeight_hope,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
0, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
//vector<const Word*> oracle = outputHope[0];
// needed for history
inputLengths.push_back(current_input_length);
ref_ids.push_back(*sid);
decoder->cleanup(chartDecoding);
//ref_length = decoder->getClosestReferenceLength(*sid, oracle.size());
//float hope_length_ratio = (float)oracle.size()/ref_length;
cerr << endl;
oracleFeatureValues.push_back(featureValues[batchPosition][oraclePos]);
oracleBleuScores.push_back(bleuScores[batchPosition][oraclePos]);
oracleModelScores.push_back(modelScores[batchPosition][oraclePos]);
// MODEL
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best wrt model score" << endl;
if (historyBleu || simpleHistoryBleu) {
vector< vector<const Word*> > outputModel = decoder->getNBest(input, *sid, n, 0.0,
bleuWeight, featureValues[batchPosition], bleuScores[batchPosition],
modelScores[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
vector<const Word*> bestModel = outputModel[0];
oneBests.push_back(bestModel);
inputLengths.push_back(current_input_length);
ref_ids.push_back(*sid);
} else {
decoder->getNBest(input, *sid, n, 0.0, bleuWeight,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
0, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
}
decoder->cleanup(chartDecoding);
//ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
//float model_length_ratio = (float)bestModel.size()/ref_length;
cerr << endl;
// FEAR
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best fear translations" << endl;
decoder->getNBest(input, *sid, n, -1.0, bleuWeight_fear,
featureValues[batchPosition], bleuScores[batchPosition], modelScores[batchPosition],
0, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
decoder->cleanup(chartDecoding);
//ref_length = decoder->getClosestReferenceLength(*sid, fear.size());
//float fear_length_ratio = (float)fear.size()/ref_length;
examples_in_batch++;
}
if (kbest) {
// MODEL
cerr << "Rank " << rank << ", epoch " << epoch << ", " << n << "best wrt model score" << endl;
if (historyBleu || simpleHistoryBleu) {
vector< vector<const Word*> > outputModel = decoder->getNBest(input, *sid, n, 0.0,
bleuWeight, featureValues[batchPosition], bleuScores[batchPosition],
modelScores[batchPosition], 1, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
vector<const Word*> bestModel = outputModel[0];
oneBests.push_back(bestModel);
inputLengths.push_back(current_input_length);
ref_ids.push_back(*sid);
} else {
decoder->getNBest(input, *sid, n, 0.0, bleuWeight,
featureValues[batchPosition], bleuScores[batchPosition],
modelScores[batchPosition], 0, realBleu, distinctNbest, avgRefLength, rank, epoch, "");
}
decoder->cleanup(chartDecoding);
//ref_length = decoder->getClosestReferenceLength(*sid, bestModel.size());
//float model_length_ratio = (float)bestModel.size()/ref_length;
cerr << endl;
examples_in_batch++;
HypothesisQueue queueHope(hope_n);
HypothesisQueue queueFear(fear_n);
cerr << endl;
if (most_violated || all_violated) {
float bleuHope = -1000;
float bleuFear = 1000;
int indexHope = -1;
int indexFear = -1;
vector<float> bleuHopeList;
vector<float> bleuFearList;
vector<float> indexHopeList;
vector<float> indexFearList;
if (most_violated)
cerr << "Rank " << rank << ", epoch " << epoch << ", pick pair with most violated constraint" << endl;
else if (all_violated)
cerr << "Rank " << rank << ", epoch " << epoch << ", pick all pairs with violated constraints";
else
cerr << "Rank " << rank << ", epoch " << epoch << ", pick all pairs with hope";
// find best hope, then find fear that violates our constraint most
for (size_t i=0; i<bleuScores[batchPosition].size(); ++i) {
if (abs(bleuScores[batchPosition][i] - bleuHope) < epsilon) { // equal bleu scores
if (modelScores[batchPosition][i] > modelScores[batchPosition][indexHope]) {
if (abs(modelScores[batchPosition][i] - modelScores[batchPosition][indexHope]) > epsilon) {
// better model score
bleuHope = bleuScores[batchPosition][i];
indexHope = i;
}
}
} else if (bleuScores[batchPosition][i] > bleuHope) { // better than current best
bleuHope = bleuScores[batchPosition][i];
indexHope = i;
}
}
float currentViolation = 0;
for (size_t i=0; i<bleuScores[batchPosition].size(); ++i) {
float bleuDiff = bleuHope - bleuScores[batchPosition][i];
float modelDiff = modelScores[batchPosition][indexHope] - modelScores[batchPosition][i];
if ((bleuDiff > epsilon) && (modelDiff < bleuDiff)) {
float diff = bleuDiff - modelDiff;
if (diff > epsilon) {
if (all_violated) {
cerr << ".. adding pair";
bleuHopeList.push_back(bleuHope);
bleuFearList.push_back(bleuScores[batchPosition][i]);
indexHopeList.push_back(indexHope);
indexFearList.push_back(i);
} else if (most_violated && diff > currentViolation) {
currentViolation = diff;
bleuFear = bleuScores[batchPosition][i];
indexFear = i;
cerr << "Rank " << rank << ", epoch " << epoch << ", current violation: " << currentViolation << " (" << modelDiff << " >= " << bleuDiff << ")" << endl;
}
}
}
}
if (most_violated) {
if (currentViolation > 0) {
cerr << "Rank " << rank << ", epoch " << epoch << ", adding pair with violation " << currentViolation << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", hope: " << bleuHope << " (" << indexHope << "), fear: " << bleuFear << " (" << indexFear << ")" << endl;
bleuScoresHope[batchPosition].push_back(bleuHope);
bleuScoresFear[batchPosition].push_back(bleuFear);
featureValuesHope[batchPosition].push_back(featureValues[batchPosition][indexHope]);
featureValuesFear[batchPosition].push_back(featureValues[batchPosition][indexFear]);
float modelScoreHope = modelScores[batchPosition][indexHope];
float modelScoreFear = modelScores[batchPosition][indexFear];
if (most_violated_reg) {
// reduce model score difference by factor ~0.5
float reg = currentViolation/4;
modelScoreHope += abs(reg);
modelScoreFear -= abs(reg);
float newViolation = (bleuHope - bleuFear) - (modelScoreHope - modelScoreFear);
cerr << "Rank " << rank << ", epoch " << epoch << ", regularized violation: " << newViolation << endl;
}
modelScoresHope[batchPosition].push_back(modelScoreHope);
modelScoresFear[batchPosition].push_back(modelScoreFear);
featureValues[batchPosition][indexHope].IncrementSparseHopeFeatures();
featureValues[batchPosition][indexFear].IncrementSparseFearFeatures();
} else {
cerr << "Rank " << rank << ", epoch " << epoch << ", no violated constraint found." << endl;
skip_example = 1;
}
} else cerr << endl;
}
if (max_bleu_diff) {
cerr << "Rank " << rank << ", epoch " << epoch << ", pick pair with max Bleu diff from list: " << bleuScores[batchPosition].size() << endl;
for (size_t i=0; i<bleuScores[batchPosition].size(); ++i) {
float hopeScore = bleuScores[batchPosition][i];
if (modelPlusBleu) hopeScore += modelScores[batchPosition][i];
BleuIndexPair hope(hopeScore, i);
queueHope.Push(hope);
float fearScore = -1*(bleuScores[batchPosition][i]);
if (modelPlusBleu) fearScore += modelScores[batchPosition][i];
BleuIndexPair fear(fearScore, i);
queueFear.Push(fear);
}
skip_example = 0;
}
cerr << endl;
vector<BleuIndexPair> hopeList, fearList;
for (size_t i=0; i<hope_n && !queueHope.Empty(); ++i) hopeList.push_back(queueHope.Pop());
for (size_t i=0; i<fear_n && !queueFear.Empty(); ++i) fearList.push_back(queueFear.Pop());
for (size_t i=0; i<hopeList.size(); ++i) {
//float bleuHope = hopeList[i].first;
size_t indexHope = hopeList[i].second;
float bleuHope = bleuScores[batchPosition][indexHope];
for (size_t j=0; j<fearList.size(); ++j) {
//float bleuFear = -1*(fearList[j].first);
size_t indexFear = fearList[j].second;
float bleuFear = bleuScores[batchPosition][indexFear];
cerr << "Rank " << rank << ", epoch " << epoch << ", hope: " << bleuHope << " (" << indexHope << "), fear: " << bleuFear << " (" << indexFear << ")" << endl;
bleuScoresHope[batchPosition].push_back(bleuHope);
bleuScoresFear[batchPosition].push_back(bleuFear);
featureValuesHope[batchPosition].push_back(featureValues[batchPosition][indexHope]);
featureValuesFear[batchPosition].push_back(featureValues[batchPosition][indexFear]);
float modelScoreHope = modelScores[batchPosition][indexHope];
float modelScoreFear = modelScores[batchPosition][indexFear];
modelScoresHope[batchPosition].push_back(modelScoreHope);
modelScoresFear[batchPosition].push_back(modelScoreFear);
featureValues[batchPosition][indexHope].IncrementSparseHopeFeatures();
featureValues[batchPosition][indexFear].IncrementSparseFearFeatures();
}
}
if (!makePairs)
cerr << "Rank " << rank << ", epoch " << epoch << "summing up hope and fear vectors, no pairs" << endl;
}
// next input sentence
++sid;
++actualBatchSize;
++shardPosition;
} // end of batch loop
if (examples_in_batch == 0 || (kbest && skip_example)) {
cerr << "Rank " << rank << ", epoch " << epoch << ", batch is empty." << endl;
} else {
vector<vector<float> > losses(actualBatchSize);
if (model_hope_fear) {
// Set loss for each sentence as BLEU(oracle) - BLEU(hypothesis)
for (size_t batchPosition = 0; batchPosition < actualBatchSize; ++batchPosition) {
for (size_t j = 0; j < bleuScores[batchPosition].size(); ++j) {
losses[batchPosition].push_back(oracleBleuScores[batchPosition] - bleuScores[batchPosition][j]);
}
}
}
// set weight for bleu feature to 0 before optimizing
vector<FeatureFunction*>::const_iterator iter;
const vector<FeatureFunction*> &featureFunctions2 = FeatureFunction::GetFeatureFunctions();
for (iter = featureFunctions2.begin(); iter != featureFunctions2.end(); ++iter) {
if ((*iter)->GetScoreProducerDescription() == "BleuScoreFeature") {
mosesWeights.Assign(*iter, 0);
break;
}
}
// scale LM feature (to avoid rapid changes)
if (scale_lm) {
cerr << "scale lm" << endl;
const std::vector<const StatefulFeatureFunction*> &statefulFFs = StatefulFeatureFunction::GetStatefulFeatureFunctions();
for (size_t i = 0; i < statefulFFs.size(); ++i) {
const StatefulFeatureFunction *ff = statefulFFs[i];
const LanguageModel *lm = dynamic_cast<const LanguageModel*>(ff);
if (lm) {
// scale down score
if (model_hope_fear) {
scaleFeatureScore(lm, scale_lm_factor, featureValues, rank, epoch);
} else {
scaleFeatureScore(lm, scale_lm_factor, featureValuesHope, rank, epoch);
scaleFeatureScore(lm, scale_lm_factor, featureValuesFear, rank, epoch);
}
}
}
}
// scale WP
if (scale_wp) {
// scale up weight
WordPenaltyProducer &wp = WordPenaltyProducer::InstanceNonConst();
// scale down score
if (model_hope_fear) {
scaleFeatureScore(&wp, scale_wp_factor, featureValues, rank, epoch);
} else {
scaleFeatureScore(&wp, scale_wp_factor, featureValuesHope, rank, epoch);
scaleFeatureScore(&wp, scale_wp_factor, featureValuesFear, rank, epoch);
}
}
// print out the feature values
if (print_feature_values) {
cerr << "\nRank " << rank << ", epoch " << epoch << ", feature values: " << endl;
if (model_hope_fear) printFeatureValues(featureValues);
else {
cerr << "hope: " << endl;
printFeatureValues(featureValuesHope);
cerr << "fear: " << endl;
printFeatureValues(featureValuesFear);
}
}
// apply learning rates to feature vectors before optimization
if (feature_confidence) {
cerr << "Rank " << rank << ", epoch " << epoch << ", apply feature learning rates with decays " << decay_core << "/" << decay_sparse << ": " << featureLearningRates << endl;
if (model_hope_fear) {
applyPerFeatureLearningRates(featureValues, featureLearningRates, sparse_r0);
} else {
applyPerFeatureLearningRates(featureValuesHope, featureLearningRates, sparse_r0);
applyPerFeatureLearningRates(featureValuesFear, featureLearningRates, sparse_r0);
}
} else {
// apply fixed learning rates
cerr << "Rank " << rank << ", epoch " << epoch << ", apply fixed learning rates, core: " << core_r0 << ", sparse: " << sparse_r0 << endl;
if (core_r0 != 1.0 || sparse_r0 != 1.0) {
if (model_hope_fear) {
applyLearningRates(featureValues, core_r0, sparse_r0);
} else {
applyLearningRates(featureValuesHope, core_r0, sparse_r0);
applyLearningRates(featureValuesFear, core_r0, sparse_r0);
}
}
}
// Run optimiser on batch:
VERBOSE(1, "\nRank " << rank << ", epoch " << epoch << ", run optimiser:" << endl);
size_t update_status = 1;
ScoreComponentCollection weightUpdate;
if (perceptron_update) {
vector<vector<float> > dummy1;
update_status = optimiser->updateWeightsHopeFear( weightUpdate, featureValuesHope,
featureValuesFear, dummy1, dummy1, dummy1, dummy1, learning_rate, rank, epoch);
} else if (hope_fear) {
if (bleuScoresHope[0][0] >= min_oracle_bleu) {
if (hope_n == 1 && fear_n ==1 && batchSize == 1 && !hildreth) {
update_status = ((MiraOptimiser*) optimiser)->updateWeightsAnalytically(weightUpdate,
featureValuesHope[0][0], featureValuesFear[0][0], bleuScoresHope[0][0],
bleuScoresFear[0][0], modelScoresHope[0][0], modelScoresFear[0][0], learning_rate, rank, epoch);
} else
update_status = optimiser->updateWeightsHopeFear(weightUpdate, featureValuesHope,
featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope,
modelScoresFear, learning_rate, rank, epoch);
} else
update_status = 1;
} else if (kbest) {
if (batchSize == 1 && featureValuesHope[0].size() == 1 && !hildreth) {
cerr << "Rank " << rank << ", epoch " << epoch << ", model score hope: " << modelScoresHope[0][0] << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", model score fear: " << modelScoresFear[0][0] << endl;
update_status = ((MiraOptimiser*) optimiser)->updateWeightsAnalytically(
weightUpdate, featureValuesHope[0][0], featureValuesFear[0][0],
bleuScoresHope[0][0], bleuScoresFear[0][0], modelScoresHope[0][0],
modelScoresFear[0][0], learning_rate, rank, epoch);
} else {
cerr << "Rank " << rank << ", epoch " << epoch << ", model score hope: " << modelScoresHope[0][0] << endl;
cerr << "Rank " << rank << ", epoch " << epoch << ", model score fear: " << modelScoresFear[0][0] << endl;
update_status = optimiser->updateWeightsHopeFear(weightUpdate, featureValuesHope,
featureValuesFear, bleuScoresHope, bleuScoresFear, modelScoresHope,
modelScoresFear, learning_rate, rank, epoch);
}
} else {
// model_hope_fear
update_status = ((MiraOptimiser*) optimiser)->updateWeights(weightUpdate,
featureValues, losses, bleuScores, modelScores, oracleFeatureValues,
oracleBleuScores, oracleModelScores, learning_rate, rank, epoch);
}
// sumStillViolatedConstraints += update_status;
if (update_status == 0) { // if weights were updated
// apply weight update
if (debug)
cerr << "Rank " << rank << ", epoch " << epoch << ", update: " << weightUpdate << endl;
if (feature_confidence) {
// update confidence counts based on weight update
confidenceCounts.UpdateConfidenceCounts(weightUpdate, signed_counts);
// update feature learning rates
featureLearningRates.UpdateLearningRates(decay_core, decay_sparse, confidenceCounts, core_r0, sparse_r0);
}
// apply weight update to Moses weights
mosesWeights.PlusEquals(weightUpdate);
if (normaliseWeights)
mosesWeights.L1Normalise();
cumulativeWeights.PlusEquals(mosesWeights);
if (sparseAverage) {
ScoreComponentCollection binary;
binary.SetToBinaryOf(mosesWeights);
cumulativeWeightsBinary.PlusEquals(binary);
}
++numberOfUpdates;
++numberOfUpdatesThisEpoch;
if (averageWeights) {
ScoreComponentCollection averageWeights(cumulativeWeights);
if (accumulateWeights) {
averageWeights.DivideEquals(numberOfUpdates);
} else {
averageWeights.DivideEquals(numberOfUpdatesThisEpoch);
}
mosesWeights = averageWeights;
}
// set new Moses weights
decoder->setWeights(mosesWeights);
//cerr << "Rank " << rank << ", epoch " << epoch << ", new weights: " << mosesWeights << endl;
}
// update history (for approximate document Bleu)
if (historyBleu || simpleHistoryBleu) {
for (size_t i = 0; i < oneBests.size(); ++i)
cerr << "Rank " << rank << ", epoch " << epoch << ", update history with 1best length: " << oneBests[i].size() << " ";
decoder->updateHistory(oneBests, inputLengths, ref_ids, rank, epoch);
deleteTranslations(oneBests);
}
} // END TRANSLATE AND UPDATE BATCH
// size of all shards except for the last one
size_t generalShardSize;
if (trainWithMultipleFolds)
generalShardSize = order.size()/coresPerFold;
else
generalShardSize = order.size()/size;
size_t mixing_base = mixingFrequency == 0 ? 0 : generalShardSize / mixingFrequency;
size_t dumping_base = weightDumpFrequency == 0 ? 0 : generalShardSize / weightDumpFrequency;
bool mix = evaluateModulo(shardPosition, mixing_base, actualBatchSize);
// mix weights?
if (mix) {
#ifdef MPI_ENABLE
cerr << "Rank " << rank << ", epoch " << epoch << ", mixing weights.. " << endl;
// collect all weights in mixedWeights and divide by number of processes
mpi::reduce(world, mosesWeights, mixedWeights, SCCPlus(), 0);
// mix confidence counts
//mpi::reduce(world, confidenceCounts, mixedConfidenceCounts, SCCPlus(), 0);
ScoreComponentCollection totalBinary;
if (sparseAverage) {
ScoreComponentCollection binary;
binary.SetToBinaryOf(mosesWeights);
mpi::reduce(world, binary, totalBinary, SCCPlus(), 0);
}
if (rank == 0) {
// divide by number of processes
if (sparseNoAverage)
mixedWeights.CoreDivideEquals(size); // average only core weights
else if (sparseAverage)
mixedWeights.DivideEquals(totalBinary);
else
mixedWeights.DivideEquals(size);
// divide confidence counts
//mixedConfidenceCounts.DivideEquals(size);
// normalise weights after averaging
if (normaliseWeights) {
mixedWeights.L1Normalise();
}
++weightMixingThisEpoch;
if (pruneZeroWeights) {
size_t pruned = mixedWeights.PruneZeroWeightFeatures();
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< pruned << " zero-weighted features pruned from mixedWeights." << endl;
pruned = cumulativeWeights.PruneZeroWeightFeatures();
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< pruned << " zero-weighted features pruned from cumulativeWeights." << endl;
}
if (featureCutoff != -1 && weightMixingThisEpoch == mixingFrequency) {
size_t pruned = mixedWeights.PruneSparseFeatures(featureCutoff);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< pruned << " features pruned from mixedWeights." << endl;
pruned = cumulativeWeights.PruneSparseFeatures(featureCutoff);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< pruned << " features pruned from cumulativeWeights." << endl;
}
if (weightMixingThisEpoch == mixingFrequency || reg_on_every_mix) {
if (l1_regularize) {
size_t pruned;
if (l1_reg_sparse)
pruned = mixedWeights.SparseL1Regularize(l1_lambda);
else
pruned = mixedWeights.L1Regularize(l1_lambda);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< "l1-reg. on mixedWeights with lambda=" << l1_lambda << ", pruned: " << pruned << endl;
}
if (l2_regularize) {
if (l2_reg_sparse)
mixedWeights.SparseL2Regularize(l2_lambda);
else
mixedWeights.L2Regularize(l2_lambda);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< "l2-reg. on mixedWeights with lambda=" << l2_lambda << endl;
}
}
}
// broadcast average weights from process 0
mpi::broadcast(world, mixedWeights, 0);
decoder->setWeights(mixedWeights);
mosesWeights = mixedWeights;
// broadcast summed confidence counts
//mpi::broadcast(world, mixedConfidenceCounts, 0);
//confidenceCounts = mixedConfidenceCounts;
#endif
#ifndef MPI_ENABLE
//cerr << "\nRank " << rank << ", no mixing, weights: " << mosesWeights << endl;
mixedWeights = mosesWeights;
#endif
} // end mixing
// Dump weights?
if (trainWithMultipleFolds || weightEpochDump == weightDumpFrequency) {
// dump mixed weights at end of every epoch to enable continuing a crashed experiment
// (for jackknife every time the weights are mixed)
ostringstream filename;
if (epoch < 10)
filename << weightDumpStem << "_mixed_0" << epoch;
else
filename << weightDumpStem << "_mixed_" << epoch;
if (weightDumpFrequency > 1)
filename << "_" << weightEpochDump;
mixedWeights.Save(filename.str());
cerr << "Dumping mixed weights during epoch " << epoch << " to " << filename.str() << endl << endl;
}
if (dumpMixedWeights) {
if (mix && rank == 0 && !weightDumpStem.empty()) {
// dump mixed weights instead of average weights
ostringstream filename;
if (epoch < 10)
filename << weightDumpStem << "_0" << epoch;
else
filename << weightDumpStem << "_" << epoch;
if (weightDumpFrequency > 1)
filename << "_" << weightEpochDump;
cerr << "Dumping mixed weights during epoch " << epoch << " to " << filename.str() << endl << endl;
mixedWeights.Save(filename.str());
++weightEpochDump;
}
} else {
if (evaluateModulo(shardPosition, dumping_base, actualBatchSize)) {
cerr << "Rank " << rank << ", epoch " << epoch << ", dump weights.. (pos: " << shardPosition << ", base: " << dumping_base << ")" << endl;
ScoreComponentCollection tmpAverageWeights(cumulativeWeights);
bool proceed = false;
if (accumulateWeights) {
if (numberOfUpdates > 0) {
tmpAverageWeights.DivideEquals(numberOfUpdates);
proceed = true;
}
} else {
if (numberOfUpdatesThisEpoch > 0) {
if (sparseNoAverage) // average only core weights
tmpAverageWeights.CoreDivideEquals(numberOfUpdatesThisEpoch);
else if (sparseAverage)
tmpAverageWeights.DivideEquals(cumulativeWeightsBinary);
else
tmpAverageWeights.DivideEquals(numberOfUpdatesThisEpoch);
proceed = true;
}
}
if (proceed) {
#ifdef MPI_ENABLE
// average across processes
mpi::reduce(world, tmpAverageWeights, mixedAverageWeights, SCCPlus(), 0);
ScoreComponentCollection totalBinary;
if (sparseAverage) {
ScoreComponentCollection binary;
binary.SetToBinaryOf(mosesWeights);
mpi::reduce(world, binary, totalBinary, SCCPlus(), 0);
}
#endif
#ifndef MPI_ENABLE
mixedAverageWeights = tmpAverageWeights;
//FIXME: What do to for non-mpi version
ScoreComponentCollection totalBinary;
#endif
if (rank == 0 && !weightDumpStem.empty()) {
// divide by number of processes
if (sparseNoAverage)
mixedAverageWeights.CoreDivideEquals(size); // average only core weights
else if (sparseAverage)
mixedAverageWeights.DivideEquals(totalBinary);
else
mixedAverageWeights.DivideEquals(size);
// normalise weights after averaging
if (normaliseWeights) {
mixedAverageWeights.L1Normalise();
}
// dump final average weights
ostringstream filename;
if (epoch < 10) {
filename << weightDumpStem << "_0" << epoch;
} else {
filename << weightDumpStem << "_" << epoch;
}
if (weightDumpFrequency > 1) {
filename << "_" << weightEpochDump;
}
/*if (accumulateWeights) {
cerr << "\nMixed average weights (cumulative) during epoch " << epoch << ": " << mixedAverageWeights << endl;
} else {
cerr << "\nMixed average weights during epoch " << epoch << ": " << mixedAverageWeights << endl;
}*/
cerr << "Dumping mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl;
mixedAverageWeights.Save(filename.str());
++weightEpochDump;
if (weightEpochDump == weightDumpFrequency) {
if (l1_regularize) {
size_t pruned = mixedAverageWeights.SparseL1Regularize(l1_lambda);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< "l1-reg. on mixedAverageWeights with lambda=" << l1_lambda << ", pruned: " << pruned << endl;
}
if (l2_regularize) {
mixedAverageWeights.SparseL2Regularize(l2_lambda);
cerr << "Rank " << rank << ", epoch " << epoch << ", "
<< "l2-reg. on mixedAverageWeights with lambda=" << l2_lambda << endl;
}
if (l1_regularize || l2_regularize) {
filename << "_reg";
cerr << "Dumping regularized mixed average weights during epoch " << epoch << " to " << filename.str() << endl << endl;
mixedAverageWeights.Save(filename.str());
}
}
if (weightEpochDump == weightDumpFrequency && printFeatureCounts) {
// print out all features with counts
stringstream s1, s2;
s1 << "sparse_feature_hope_counts" << "_" << epoch;
s2 << "sparse_feature_fear_counts" << "_" << epoch;
ofstream sparseFeatureCountsHope(s1.str().c_str());
ofstream sparseFeatureCountsFear(s2.str().c_str());
mixedAverageWeights.PrintSparseHopeFeatureCounts(sparseFeatureCountsHope);
mixedAverageWeights.PrintSparseFearFeatureCounts(sparseFeatureCountsFear);
sparseFeatureCountsHope.close();
sparseFeatureCountsFear.close();
}
}
}
}// end dumping
} // end if dump
} // end of shard loop, end of this epoch
cerr << "Rank " << rank << ", epoch " << epoch << ", end of epoch.." << endl;
if (historyBleu || simpleHistoryBleu) {
cerr << "Bleu feature history after epoch " << epoch << endl;
decoder->printBleuFeatureHistory(cerr);
}
// cerr << "Rank " << rank << ", epoch " << epoch << ", sum of violated constraints: " << sumStillViolatedConstraints << endl;
// Check whether there were any weight updates during this epoch
size_t sumUpdates;
size_t *sendbuf_uint, *recvbuf_uint;
sendbuf_uint = (size_t *) malloc(sizeof(size_t));
recvbuf_uint = (size_t *) malloc(sizeof(size_t));
#ifdef MPI_ENABLE
sendbuf_uint[0] = numberOfUpdatesThisEpoch;
recvbuf_uint[0] = 0;
MPI_Reduce(sendbuf_uint, recvbuf_uint, 1, MPI_UNSIGNED, MPI_SUM, 0, world);
sumUpdates = recvbuf_uint[0];
#endif
#ifndef MPI_ENABLE
sumUpdates = numberOfUpdatesThisEpoch;
#endif
if (rank == 0 && sumUpdates == 0) {
cerr << "\nNo weight updates during this epoch.. stopping." << endl;
stop = true;
#ifdef MPI_ENABLE
mpi::broadcast(world, stop, 0);
#endif
}
if (!stop) {
// Test if weights have converged
if (weightConvergence) {
bool reached = true;
if (rank == 0 && (epoch >= 2)) {
ScoreComponentCollection firstDiff, secondDiff;
if (dumpMixedWeights) {
firstDiff = mixedWeights;
firstDiff.MinusEquals(mixedWeightsPrevious);
secondDiff = mixedWeights;
secondDiff.MinusEquals(mixedWeightsBeforePrevious);
} else {
firstDiff = mixedAverageWeights;
firstDiff.MinusEquals(mixedAverageWeightsPrevious);
secondDiff = mixedAverageWeights;
secondDiff.MinusEquals(mixedAverageWeightsBeforePrevious);
}
VERBOSE(1, "Average weight changes since previous epoch: " << firstDiff << " (max: " << firstDiff.GetLInfNorm() << ")" << endl);
VERBOSE(1, "Average weight changes since before previous epoch: " << secondDiff << " (max: " << secondDiff.GetLInfNorm() << ")" << endl << endl);
// check whether stopping criterion has been reached
// (both difference vectors must have all weight changes smaller than min_weight_change)
if (firstDiff.GetLInfNorm() >= min_weight_change)
reached = false;
if (secondDiff.GetLInfNorm() >= min_weight_change)
reached = false;
if (reached) {
// stop MIRA
stop = true;
cerr << "\nWeights have converged after epoch " << epoch << ".. stopping MIRA." << endl;
ScoreComponentCollection dummy;
ostringstream endfilename;
endfilename << "stopping";
dummy.Save(endfilename.str());
}
}
mixedWeightsBeforePrevious = mixedWeightsPrevious;
mixedWeightsPrevious = mixedWeights;
mixedAverageWeightsBeforePrevious = mixedAverageWeightsPrevious;
mixedAverageWeightsPrevious = mixedAverageWeights;
#ifdef MPI_ENABLE
mpi::broadcast(world, stop, 0);
#endif
} //end if (weightConvergence)
}
} // end of epoch loop
#ifdef MPI_ENABLE
MPI_Finalize();
#endif
time(&now);
cerr << "Rank " << rank << ", " << ctime(&now);
if (rank == 0) {
ScoreComponentCollection dummy;
ostringstream endfilename;
endfilename << "finished";
dummy.Save(endfilename.str());
}
delete decoder;
exit(0);
}
bool loadSentences(const string& filename, vector<string>& sentences)
{
ifstream in(filename.c_str());
if (!in)
return false;
string line;
while (getline(in, line))
sentences.push_back(line);
return true;
}
bool evaluateModulo(size_t shard_position, size_t mix_or_dump_base, size_t actual_batch_size)
{
if (mix_or_dump_base == 0) return 0;
if (actual_batch_size > 1) {
bool mix_or_dump = false;
size_t numberSubtracts = actual_batch_size;
do {
if (shard_position % mix_or_dump_base == 0) {
mix_or_dump = true;
break;
}
--shard_position;
--numberSubtracts;
} while (numberSubtracts > 0);
return mix_or_dump;
} else {
return ((shard_position % mix_or_dump_base) == 0);
}
}
void printFeatureValues(vector<vector<ScoreComponentCollection> > &featureValues)
{
for (size_t i = 0; i < featureValues.size(); ++i) {
for (size_t j = 0; j < featureValues[i].size(); ++j) {
cerr << featureValues[i][j] << endl;
}
}
cerr << endl;
}
void deleteTranslations(vector<vector<const Word*> > &translations)
{
for (size_t i = 0; i < translations.size(); ++i) {
for (size_t j = 0; j < translations[i].size(); ++j) {
delete translations[i][j];
}
}
}
void decodeHopeOrFear(size_t rank, size_t size, size_t decode, string filename, vector<string> &inputSentences, MosesDecoder* decoder, size_t n, float bleuWeight)
{
if (decode == 1)
cerr << "Rank " << rank << ", decoding dev input set according to hope objective.. " << endl;
else if (decode == 2)
cerr << "Rank " << rank << ", decoding dev input set according to fear objective.. " << endl;
else
cerr << "Rank " << rank << ", decoding dev input set according to normal objective.. " << endl;
// Create shards according to the number of processes used
vector<size_t> order;
for (size_t i = 0; i < inputSentences.size(); ++i)
order.push_back(i);
vector<size_t> shard;
float shardSize = (float) (order.size()) / size;
size_t shardStart = (size_t) (shardSize * rank);
size_t shardEnd = (size_t) (shardSize * (rank + 1));
if (rank == size - 1) {
shardEnd = inputSentences.size();
shardSize = shardEnd - shardStart;
}
VERBOSE(1, "Rank " << rank << ", shard start: " << shardStart << " Shard end: " << shardEnd << endl);
VERBOSE(1, "Rank " << rank << ", shard size: " << shardSize << endl);
shard.resize(shardSize);
copy(order.begin() + shardStart, order.begin() + shardEnd, shard.begin());
// open files for writing
stringstream fname;
fname << filename << ".rank" << rank;
filename = fname.str();
ostringstream filename_nbest;
filename_nbest << filename << "." << n << "best";
ofstream out(filename.c_str());
ofstream nbest_out((filename_nbest.str()).c_str());
if (!out) {
ostringstream msg;
msg << "Unable to open " << fname.str();
throw runtime_error(msg.str());
}
if (!nbest_out) {
ostringstream msg;
msg << "Unable to open " << filename_nbest;
throw runtime_error(msg.str());
}
for (size_t i = 0; i < shard.size(); ++i) {
size_t sid = shard[i];
string& input = inputSentences[sid];
vector<vector<ScoreComponentCollection> > dummyFeatureValues;
vector<vector<float> > dummyBleuScores;
vector<vector<float> > dummyModelScores;
vector<ScoreComponentCollection> newFeatureValues;
vector<float> newScores;
dummyFeatureValues.push_back(newFeatureValues);
dummyBleuScores.push_back(newScores);
dummyModelScores.push_back(newScores);
float factor = 0.0;
if (decode == 1) factor = 1.0;
if (decode == 2) factor = -1.0;
cerr << "Rank " << rank << ", translating sentence " << sid << endl;
bool realBleu = false;
vector< vector<const Word*> > nbestOutput = decoder->getNBest(input, sid, n, factor, bleuWeight, dummyFeatureValues[0],
dummyBleuScores[0], dummyModelScores[0], n, realBleu, true, false, rank, 0, "");
cerr << endl;
decoder->cleanup(StaticData::Instance().IsChart());
for (size_t i = 0; i < nbestOutput.size(); ++i) {
vector<const Word*> output = nbestOutput[i];
stringstream translation;
for (size_t k = 0; k < output.size(); ++k) {
Word* w = const_cast<Word*>(output[k]);
translation << w->GetString(0);
translation << " ";
}
if (i == 0)
out << translation.str() << endl;
nbest_out << sid << " ||| " << translation.str() << " ||| " << dummyFeatureValues[0][i] <<
" ||| " << dummyModelScores[0][i] << " ||| sBleu=" << dummyBleuScores[0][i] << endl;
}
}
out.close();
nbest_out.close();
cerr << "Closing files " << filename << " and " << filename_nbest.str() << endl;
#ifdef MPI_ENABLE
MPI_Finalize();
#endif
time_t now;
time(&now);
cerr << "Rank " << rank << ", " << ctime(&now);
delete decoder;
exit(0);
}
void applyLearningRates(vector<vector<ScoreComponentCollection> > &featureValues, float core_r0, float sparse_r0)
{
for (size_t i=0; i<featureValues.size(); ++i) // each item in batch
for (size_t j=0; j<featureValues[i].size(); ++j) // each item in nbest
featureValues[i][j].MultiplyEquals(core_r0, sparse_r0);
}
void applyPerFeatureLearningRates(vector<vector<ScoreComponentCollection> > &featureValues, ScoreComponentCollection featureLearningRates, float sparse_r0)
{
for (size_t i=0; i<featureValues.size(); ++i) // each item in batch
for (size_t j=0; j<featureValues[i].size(); ++j) // each item in nbest
featureValues[i][j].MultiplyEqualsBackoff(featureLearningRates, sparse_r0);
}
void scaleFeatureScore(const FeatureFunction *sp, float scaling_factor, vector<vector<ScoreComponentCollection> > &featureValues, size_t rank, size_t epoch)
{
string name = sp->GetScoreProducerDescription();
// scale down score
float featureScore;
for (size_t i=0; i<featureValues.size(); ++i) { // each item in batch
for (size_t j=0; j<featureValues[i].size(); ++j) { // each item in nbest
featureScore = featureValues[i][j].GetScoreForProducer(sp);
featureValues[i][j].Assign(sp, featureScore*scaling_factor);
//cerr << "Rank " << rank << ", epoch " << epoch << ", " << name << " score scaled from " << featureScore << " to " << featureScore/scaling_factor << endl;
}
}
}
void scaleFeatureScores(const FeatureFunction *sp, float scaling_factor, vector<vector<ScoreComponentCollection> > &featureValues, size_t rank, size_t epoch)
{
string name = sp->GetScoreProducerDescription();
// scale down score
for (size_t i=0; i<featureValues.size(); ++i) { // each item in batch
for (size_t j=0; j<featureValues[i].size(); ++j) { // each item in nbest
vector<float> featureScores = featureValues[i][j].GetScoresForProducer(sp);
for (size_t k=0; k<featureScores.size(); ++k)
featureScores[k] *= scaling_factor;
featureValues[i][j].Assign(sp, featureScores);
//cerr << "Rank " << rank << ", epoch " << epoch << ", " << name << " score scaled from " << featureScore << " to " << featureScore/scaling_factor << endl;
}
}
}
|