File size: 11,239 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
#!/usr/bin/env python
import unittest
from math import log,exp
import nbest
import numpy.testing as nptest
import sampler
from train import *
import util
class TestParabaloidOptimiser(unittest.TestCase):
def setUp(self):
self.o = ParabaloidOptimiser(np.array([1,2,3,4]))
def test_parabaloid_bfgs(self):
start = np.array([2,2,2,2])
minimum = self.o.optimise_bfgs(start)
for m in minimum:
self.assertAlmostEqual(m,0)
def test_parabaloid_lbfgs(self):
start = np.array([2,2,2,2])
minimum = self.o.optimise_lbfgs(start)
for m in minimum:
self.assertAlmostEqual(m,0)
class TestLogisticRegressionOptimiser(unittest.TestCase):
def test_objective(self):
x = np.array([[1], [0]])
y = np.array([1,-1])
lro = LogisticRegressionOptimiser(x,y)
w = np.array([2])
expected = -log(1 / (1 + exp(-2))) - log(0.5)
self.assertAlmostEqual(lro.objective(w), expected)
def test_reg_objective(self):
x = np.array([[1], [0]])
y = np.array([1,-1])
alpha = 0.1
lro = LogisticRegressionOptimiser(x,y,alpha)
w = np.array([2])
expected = -log(1 / (1 + exp(-2))) - log(0.5) + 0.5*2*2 * alpha
self.assertAlmostEqual(lro.objective(w), expected)
def test_gradient_j(self):
x = np.array([[1], [0]])
y = np.array([1,-1])
lro = LogisticRegressionOptimiser(x,y)
w = np.array([2])
expected = -1 / (1 + exp(2))
self.assertAlmostEqual(lro.grad_j(w,0), expected)
def test_gradient(self):
x = np.array([[1,1], [0,1]])
y = np.array([1,-1])
w = np.array([2,1])
lro = LogisticRegressionOptimiser(x,y)
e0 = -1 / (1 + exp(3))
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1))
actual = lro.grad(w)
#print "expected: ",e0,e1
self.assertAlmostEqual(actual[0], e0)
self.assertAlmostEqual(actual[1], e1)
def test_reg_gradient(self):
x = np.array([[1,1], [0,1]])
y = np.array([1,-1])
alpha = 0.2
w = np.array([2,1])
lro = LogisticRegressionOptimiser(x,y, alpha)
e0 = -1 / (1 + exp(3)) + w[0]*alpha
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1)) +w[1]*alpha
actual = lro.grad(w)
self.assertAlmostEqual(actual[0], e0)
self.assertAlmostEqual(actual[1], e1)
def test_train(self):
x = np.array([[1,1],[-1,-2]])
y = np.array([1,-1])
w0 = np.array([1,-1])
lro = LogisticRegressionOptimiser(x,y)
actual = lro.train(w0, debug=False)
self.assertAlmostEqual(actual[0], 12.03882542)
self.assertAlmostEqual(actual[1], 8.02317419)
def test_train_reg(self):
x = np.array([[1,1],[-1,1]])
y = np.array([1,-1])
alpha = 0.1
w0 = np.array([1,-1])
lro = LogisticRegressionOptimiser(x,y,alpha)
actual = lro.train(w0, debug=False)
self.assertAlmostEqual(actual[1],0) # 2nd input should be ignored
# classify first example as negative, second as positive
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([1,1])))) > 0.5)
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([-1,-2])))) < 0.5)
def test_xy(self):
"""Test pre-calculation of the y_i*x_ij vectors"""
x = np.array([[1,3], [2,8], [1,3]])
y = np.array([1,1,-1])
lro = LogisticRegressionOptimiser(x,y)
expected = np.array([[1,3], [2,8], [-1,-3]])
for i in 0,1,2:
for j in 0,1:
self.assertEqual(lro.xy[i][j], expected[i][j])
#
class TestMixtureModelTrainer(unittest.TestCase):
def setUp(self):
# 3 phrase table features, but last one is ignored for interpolation
nbest._feature_index = {"tm" : [0,3], "lm" : [3,4]}
log05 = np.log(0.5)
log03 = np.log(0.3)
log02 = np.log(0.2)
log01 = np.log(0.1)
hyp0 = nbest.Hypothesis("a |0-0| b c |1-2|", [log05, log05, log02, log03], True)
hyp0.input_line = "A B C"
hyp0.score = 3
# Two ttables, columns correspond to features, rows to phrase pairs
hyp0.phrase_scores = np.array([\
[[0.2, 0.3],\
[0.4, 0.3]],\
[[0, 0.2],\
[0.4,0.2]]])
hyp1 = nbest.Hypothesis("x |0-2|", [log02, log03, log03, log01], True)
hyp1.input_line = "X Y Z"
hyp1.score = 2
hyp1.phrase_scores = np.array([\
[[0.1, 0.1]],\
[[0.8,0.1]]])
hyp2 = nbest.Hypothesis("z |0-1| w |2-2| p |3-3|", [log02, log02, log05, log05], True)
hyp2.score = 1
hyp2.input_line = "M N O"
# phrase_table x phrase_pair x feature
hyp2.phrase_scores = np.array([\
[[0.1, 0.2],\
[0.3,0.5],\
[0.4,0.6]],\
[[0.1,0.5],\
[0.6,0.1],\
[0.2,0.2]]])
self.samples = [sampler.Sample(hyp0,hyp1), sampler.Sample(hyp1,hyp2)]
self.trainer = MixtureModelTrainer(self.samples)
def get_phrase_scores(self, hypothesis, iw):
nptest.assert_almost_equal(np.sum(iw, axis=0), np.array([1.0,1.0]))
phrase_probs = hypothesis.phrase_scores
interpolated_probs = np.sum(np.expand_dims(iw,1)*phrase_probs, axis = 0)
total_probs = np.prod(interpolated_probs, axis = 0)
return util.safelog(total_probs)
def model_score(self, hypothesis, weights):
# interpolation weights
# ttable x feature
iw = np.array([[weights[-2], weights[-1]],
[1-weights[-2],1-weights[-1]]])
#print "iw:",iw
phrase_scores = self.get_phrase_scores(hypothesis,iw)
weighted_phrase_scores = weights[:2] * phrase_scores
score = np.sum(weighted_phrase_scores)
other_score = np.sum(weights[2:4]*hypothesis.fv[2:4])
return score + other_score
def test_objective(self):
# 2 phrase weights, 2 other feature weights,
# 2 interpolation weights (1 per model x 2 phrase features)
weights = np.array([0.2,0.1,0.4,0.5,0.3,0.6])
actual = self.trainer.objective(weights)
# Expected objective is the sum of the logs of sigmoids of the score differences
# Weighted by 1 if hyp1 > hyp2, -1 otherwise
expected = 0
for sample in self.samples:
hyp1_model_score = self.model_score(sample.hyp1, weights)
hyp2_model_score = self.model_score(sample.hyp2, weights)
y = 1
if sample.hyp2.score > sample.hyp1.score: y = -1
expected -= log(sigmoid(y * (hyp1_model_score - hyp2_model_score)))
# regularisation
expected += 0.5 * self.trainer.alpha * np.dot(weights[:-2], weights[:-2])
self.assertAlmostEquals(actual,expected)
def test_gradient_other(self):
# Gradients are just differences in feature vectors
# fv(hypo0)-fv(hyp1), fv(hyp1)-fv(hyp2)
delta_s = np.vstack((self.samples[0].hyp1.fv-self.samples[0].hyp2.fv,\
self.samples[1].hyp1.fv-self.samples[1].hyp2.fv))
# feature functions across rows, samples down columns
# choose other features
other_delta_s = delta_s[:,2:]
actual = self.trainer.gradient_other()
nptest.assert_almost_equal(actual,other_delta_s)
def test_gradient_phrase(self):
iw = np.array([[0.3, 0.4],[0.7,0.6]])
sample_deltaf_list = []
for sample in self.samples:
f_A = self.get_phrase_scores(sample.hyp1, iw)
f_B = self.get_phrase_scores(sample.hyp2, iw)
sample_deltaf_list.append(f_A - f_B)
expected = np.vstack(sample_deltaf_list) # samples down, features along
actual = self.trainer.gradient_phrase(iw)
nptest.assert_almost_equal(actual,expected)
def test_gradient_interp(self):
# The interpolation weights - ttable x feature
iw = np.array([[0.3, 0.4],[0.7,0.6]])
phrasew = np.array([1,2]) # The phrase weights
num_ttables = iw.shape[0]
num_phrase_features = iw.shape[1]
bysample_list = []
# Stack up gradients for each sample
for sample in self.samples:
# Get the gradient of the interpolation weights for each
# hypothesis (A and B) in the sample
byhyp = []
for hyp in [sample.hyp1,sample.hyp2]:
# the weights are flattened. rows of iw joined together, last row omitted
grad_k = np.array([0.0] * ((num_ttables - 1) * num_phrase_features))
# Iterate through the phrase features
for j,probs in enumerate(np.transpose(hyp.phrase_scores)):
# j is phrase feature index
# probs is phrase-pair, ttable
grad_jk = np.array([0.0] * (len(iw)-1))
for l,phi in enumerate(probs):
# For each phrase-pair the gradient term for the lambda
# is the probability for this ttable - probability for last ttable
# divided by overall phrase probability
num = phi[:-1] - phi[-1]
denom = np.sum(iw[:,j]*phi) # use interpolation weights for this feature
grad_jk = grad_jk + (num/denom)
self.assertEquals(len(grad_jk), num_ttables-1)
#print "num",num,"denom",denom,"grad_jk",grad_jk
# add gradient in correct place
#print "\n",j,grad_k,phrasew[j]*grad_jk
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] =\
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] + phrasew[j]*grad_jk
#print "\ngrad_k",grad_k
byhyp.append(grad_k)
bysample_list.append(byhyp[0]-byhyp[1])
#print "diff: ", bysample_list[-1]
expected = np.vstack(bysample_list)
actual = self.trainer.gradient_interp(iw,phrasew)
nptest.assert_almost_equal(actual,expected, decimal=5)
def test_gradient(self):
# 2 phrase weights, 2 other feature weights,
# 2 interpolation weights (2 models and 2 tables)
weights = np.array([0.2,0.1,0.4,0.5,0.6,0.3])
expected = np.array([0.0] * len(weights))
# Get the gradients
iw = np.array([[weights[-2], weights[-1]],
[1-weights[-2],1-weights[-1]]])
phrase_g = self.trainer.gradient_phrase(iw)
other_g = self.trainer.gradient_other()
interp_g = self.trainer.gradient_interp(iw,weights[:2])
for k,sample in enumerate(self.samples):
hyp1_model_score = self.model_score(sample.hyp1, weights)
hyp2_model_score = self.model_score(sample.hyp2, weights)
y = 1
if sample.hyp2.score > sample.hyp1.score: y = -1
delta_score = hyp1_model_score - hyp2_model_score
sig_delta_score = sigmoid(-y * delta_score)
# phrase derivative term
expected[:2] -= (phrase_g[k]*sig_delta_score*y)
# other derivative term
expected[2:4] -= (other_g[k]*sig_delta_score*y)
# inter derivative term
expected[-2:] -= (interp_g[k]*sig_delta_score*y)
expected += self.trainer.alpha*np.append(weights[:-2], np.array([0.0,0.0]))
actual = self.trainer.gradient(weights)
nptest.assert_almost_equal(actual,expected)
def test_split_weights(self):
w = np.array([1,2,3,4,0.2,0.3])
sw = self.trainer.get_split_weights(w)
self.assertEquals(len(sw),3)
nptest.assert_almost_equal(sw['phrase'], np.array([1,2]))
nptest.assert_almost_equal(sw['other'], np.array([3,4]))
nptest.assert_almost_equal(sw['interp'], \
np.array([[0.2,0.3], [0.8,0.7]]))
def test_train(self):
"""Simple test that it runs without errors"""
print "x=",self.trainer.train()
if __name__ == "__main__":
unittest.main()
suite = unittest.TestSuite([
unittest.TestLoader().loadTestsFromTestCase(TestParabaloidOptimiser),
unittest.TestLoader().loadTestsFromTestCase(TestLogisticRegressionOptimiser),
unittest.TestLoader().loadTestsFromTestCase(TestMixtureModelTrainer)])
|