File size: 15,644 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
#!/usr/bin/env python
#
# Train the model weights
#
from math import log,exp
import sys
import numpy as np
from scipy.optimize.optimize import fmin_cg, fmin_bfgs, fmin
from scipy.optimize.lbfgsb import fmin_l_bfgs_b
import nbest
from util import safelog
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
class OptimisationException(Exception):
pass
class ParabaloidOptimiser:
"""Optimises a very simple function, to test scipy"""
def __init__(self, params):
self.params = params
def objective(self,x):
return np.sum(x*x*self.params*self.params)
def grad_k(self,x,k):
return 2 * self.params[k]**2 * x[k]
def grad(self,x):
return np.array([self.grad_k(x,k) for k in range(len(x))])
def debug(self,x):
print "x = ",x
def optimise_bfgs(self,start):
print
print "***** BFGS OPTIMISATION *****"
return fmin_bfgs(self.objective, start, fprime=self.grad, callback=self.debug)
def optimise_lbfgs(self,start):
print
print "***** LBFGS OPTIMISATION *****"
x,f,d = fmin_l_bfgs_b(self.objective, start, fprime=self.grad, pgtol=1e-09, iprint=0)
return x
class LRDataException(Exception):
pass
class LogisticRegressionOptimiser:
"""Optimise logistic regression weights"""
def __init__(self,x,y, alpha = 0):
"""Training data (x) should be vector of feature vectors, and
corresponding vector of outputs (with values -1,1).
alpha controls the L2-normalisation"""
self.x = x
self.y = y
self.alpha = alpha
if len(x) != len(y): raise LRDataException("Lengths of input and response don't match")
if len(x) == 0: raise LRDataException("Data set is empty")
# Precalculate {y_i*x_ij} for all j
self.xy = x*y[:,None]
def objective(self,w):
"""Calculate the value of the negative log-likelihood for a given weight set"""
l = 0
for i in range(len(self.x)):
# Each example contributes log(sigma(y_i * x_i . w))
l -= log(sigmoid(self.y[i] * np.dot(w, self.x[i,:])))
# regularisation 1/2 * alpha * ||w||^2
l += 0.5 * self.alpha * np.dot(w,w)
return l
def grad_j(self,w,j):
"""Gradient of the objective in the jth direction for given weight set"""
g = 0
for i in range(len(self.x)):
# Each example contributes -sigma(-y_i * x_i.w) * y_j x_ij
g -= sigmoid(-self.y[i] * np.dot(w, self.x[i,:])) * self.y[i] * self.x[i,j]
#regularisation
g += self.alpha * w[j]
return g
def grad(self,w):
"""Gradient of objective at given weight set - returns a vector"""
# Calculate the vector -sigma(-y_i * x_i.w)
s = -np.array([sigmoid(-yi * np.dot(xi,w)) for xi,yi in zip(self.x,self.y)])
# Multiply it by xy
g = np.array([np.dot(xyj,s) for xyj in self.xy.transpose()])
# Add regularisation
g += self.alpha*w
return g
#g = np.array([self.grad_j(w,j) for j in xrange(len(w))])
def train(self,w0,debug=False):
if debug:
iprint = 0
else:
iprint = -1
x,f,d = fmin_l_bfgs_b(self.objective, w0, fprime=self.grad, pgtol=1e-09, iprint=iprint)
if d['warnflag'] != 0:
raise OptimisationException(d['task'])
return x
class ProTrainer:
"""Turns the samples into a logistic regression problem"""
def __init__(self,samples):
self.samples = samples
self.alpha = 1
self.dims = len(samples[0].hyp1.fv)
def train(self, debug=False):
x = np.array([s.hyp1.fv-s.hyp2.fv for s in self.samples])
#print x
y = np.array([cmp(s.hyp1.score,s.hyp2.score) for s in self.samples])
#print y
lro = LogisticRegressionOptimiser(x,y,self.alpha)
w0 = np.zeros(self.dims)
w = lro.train(w0,debug)
w = w/np.sum(abs(w)) # L_1 normalise
return w,[]
class MixtureModelTrainer:
"""Trains the phrase mixture weights, as well as the regular feature weights"""
def __init__(self,samples):
self.alpha = 1
self.interp_floor = 0.001 # minimum value for interpolation weight
#self.prob_floor = 0.00000001 # floor probabilities at this value
#self.weight_bounds = (-10,10) # bounds for other features
# The phrase scores are joined into a 5d array, where the dimensions are:
# sample, hyp1 or hyp2, ttable, phrase-pair, feature
# ie the feature is the last dimension
# Actually phrase_probs is a 2-dim list of 3-dim arrays, since it's ragged
self.phrase_probs = \
[[sample.hyp1.phrase_scores,sample.hyp2.phrase_scores]\
for sample in samples]
#[[sample.hyp1.phrase_scores.clip(self.prob_floor),sample.hyp2.phrase_scores.clip(self.prob_floor)]\
# Figure out where the weights are
self.phrase_index = list(nbest.get_feature_index("tm"))
self.phrase_index[1] = self.phrase_index[1]-1 # phrase penalty not interpolated
interp_length = (self.phrase_index[1]-self.phrase_index[0]) * \
(len(samples[0].hyp1.phrase_scores)-1)
weight_length = len(samples[0].hyp1.fv) + interp_length
self.interp_index = [weight_length - interp_length,weight_length]
#print self.interp_index
self.other_index = [[0,self.phrase_index[0]],[self.phrase_index[1],self.interp_index[0]]]
# join the feature vector diffs for the other fvs into a 2d array
# features across, samples down
self.fvs = np.array(\
[np.append(sample.hyp1.fv[self.other_index[0][0]:self.other_index[0][1]],
sample.hyp1.fv[self.other_index[1][0]:self.other_index[1][1]]) - \
np.append(sample.hyp2.fv[self.other_index[0][0]:self.other_index[0][1]],\
sample.hyp2.fv[self.other_index[1][0]:self.other_index[1][1]])\
for sample in samples])
self.cached_iw = None
self.cached_interpolated_phrase_probs = None
self.cached_sw = None
self.cached_y_times_diffs = None
# join the responses (y's) into an array
# If any pairs have equal score, this sets y=0, an invalid response.
# but the sampling should ensure that this doesn't happen
self.y = np.array([cmp(sample.hyp1.score, sample.hyp2.score)\
for sample in samples])
def get_split_weights(self,weights):
"""Map containing all the different weight sets:
phrase - phrase feature weights (excluding penalty)
other - other feature weights
interp - interpolation weights: ttable x feature
"""
sw = {}
sw['phrase'] = weights[self.phrase_index[0]:self.phrase_index[1]]
sw['interp'] = weights[self.interp_index[0]:self.interp_index[1]]
sw['interp'] = sw['interp'].T.reshape\
(( len(sw['interp']) / len(sw['phrase'])), len(sw['phrase']))
# Add normalisations
sw['interp'] = np.vstack((sw['interp'], 1.0 - np.sum(sw['interp'], axis=0)))
#sw['interp'] = np.append(sw['interp'], 1 - np.sum(sw['interp']))
sw['other'] = np.append(weights[self.other_index[0][0]:self.other_index[0][1]],
weights[self.other_index[1][0]:self.other_index[1][1]])
return sw
def get_interpolated_phrase_probs(self,iw):
# Memoise
if self.cached_iw == None or np.sum(np.abs(iw-self.cached_iw)) != 0:
# iw is ttable x feature. Each element of phrase_probs is ttable x pair x feature
iw_expanded = np.expand_dims(iw,1)
# self.phrase probs is a 2-d list, so use python iteration
interpolated = [ [iw_expanded*p for p in ps] for ps in self.phrase_probs]
self.cached_interpolated_phrase_probs = np.sum(np.array(interpolated), axis = 2)
self.cached_iw = iw
return self.cached_interpolated_phrase_probs
def get_y_times_diffs(self,sw):
""" Calculate the array y_k* \Delta S_k"""
# Process the phrase scores first.
# - for each phrase, interpolate across the ttables using the current weights
# - sum the log probs across phrase pairs to get a score for each hypothesis
# - take the weighted sum of these scores, to give a phrase feature total
# for each hyp
# Memoise
if self.cached_sw == None or \
np.sum(np.abs(self.cached_sw['other'] - sw['other'])) != 0 or \
np.sum(np.abs(self.cached_sw['phrase'] - sw['phrase'])) != 0 or \
np.sum(np.abs(self.cached_sw['interp'] - sw['interp'])) != 0:
# do the interpolation
iw = sw['interp']
interpolated = self.get_interpolated_phrase_probs(iw)
# Use traditional python as not sure how to vectorise. This goes through
# each hypothesis, logs the probability, applies the feature weights, then sums
self.cached_y_times_diffs = np.zeros(len(interpolated))
# Take the difference between the hypotheses
for i,sample in enumerate(interpolated):
self.cached_y_times_diffs[i] = \
np.sum(sw['phrase']* np.log(sample[0])) - \
np.sum(sw['phrase']* np.log(sample[1]))
#print self.fvs, sw['other']
#print sw['other'], self.fvs
self.cached_y_times_diffs += np.sum(sw['other'] * self.fvs, axis=1) # add other scores
self.cached_y_times_diffs *= self.y
self.cached_sw = sw
return self.cached_y_times_diffs
def objective(self,w):
"""The value of the objective with the given weight vector.
The objective is the sum of the log of the sigmoid of the differences
in scores between the two hypotheses times y.
"""
diffs = self.get_y_times_diffs(self.get_split_weights(w))
#print diffs, sigmoid(diffs)
obj = -np.sum(np.log(sigmoid(diffs))) #negative, since minimising
# regularisation
obj += 0.5 * self.alpha * np.dot(w[:self.interp_index[0]], w[:self.interp_index[0]])
return obj
#
# The following methods compute the derivatives of the score differences
# with respect to each of the three types of weights. They should all
# return an np.array, with features across, and samples down
#
def gradient_phrase(self,interp):
"""Compute the derivative of the score difference for the 'phrase' weights.
Args:
interp: The interpolation weights
"""
# Compute the interpolated phrase probs
interpolated = self.get_interpolated_phrase_probs(interp)
# for each sample, log and sum across phrases, then compute the feature value
# difference for each sample.
# TODO: Better vectorisation
grad_list = []
for i, sample in enumerate(interpolated):
f_A = np.sum(np.log(sample[0]), axis=0)
f_B = np.sum(np.log(sample[1]), axis=0)
grad_list.append(f_A - f_B)
return np.vstack(grad_list)
def gradient_interp(self,interp,phrase):
"""Compute the derivative of the score difference for the 'interp' weights
Args:
interp: All the interpolation weights. These will be in a 2-dim np array,
where the dims are ttable x phrase feature. Note that there are k rows,
one for each ttable, so the sum down the columns will be 1.
phrase: The weights of the phrase features
Returns:
A 2-d array, with samples down and gradients along. Note that in the gradients
(rows) the interpolation weights are flattened out, and have the last ttable
removed.
"""
num_interp_weights = (interp.shape[0]-1) * interp.shape[1]
grad_list = np.empty((len(self.phrase_probs),num_interp_weights))
expanded_interp = np.expand_dims(interp,1)
def df_by_dlambda(phi):
"""Derivative of phrase scores w.r.t. lambdas"""
#print "Interp:", interp, "\nPhi", phi
num = phi[:-1] - phi[-1]
denom = np.sum(expanded_interp*phi, axis=0)
# num is ttable x phrase-pair x feature
# denom is phrase-pair x feature
# divide, then sum across phrase-pairs
#print "num",num,"denom",denom
#print "q",num/denom
quotient = np.sum(num/denom, axis =1)
# quotient is ttable-1 x feature
return quotient
for k, sample in enumerate(self.phrase_probs):
# derivative is the weighted sum of df_by_dlambda_A - df_by_dlambda_B
#print "\nq0", df_by_dlambda(sample[0])
#print "hyp0",np.sum(phrase * (df_by_dlambda(sample[0])), axis=0)
#print "q1", df_by_dlambda(sample[1])
#print "hyp1",np.sum(phrase * (df_by_dlambda(sample[1])), axis=0),"\n"
#TODO: Check if the sum is required here. With 4 ttables and 4 features
# it gives lhs as (12) and rhs as (4)
grad_list[k] = (phrase * (df_by_dlambda(sample[0]) - df_by_dlambda(sample[1]))).flatten()
#grad_list = np.vstack(grad_list)
return grad_list
def gradient_other(self):
"""Compute the derivative of the score difference for the 'other' weights.
Features across, samples down.
"""
# This is just the difference in the feature values
return self.fvs
def gradient(self,w):
sw = self.get_split_weights(w)
sig_y_by_diffs = sigmoid(-self.get_y_times_diffs(sw))
# These all return 2-d arrays, with samples dowm and features across.
# NB: Both gradient_phrase and gradient_interp iterate through the samples,
# so this is probably inefficient
phrase_g = self.gradient_phrase(sw['interp'])
interp_g = self.gradient_interp(sw['interp'], sw['phrase'])
other_g = self.gradient_other()
# For each feature, we get the gradient by multiplying by \sigma (-y*\Delta S),
# multiplying by y, and summing across all samples
# Take negatives since we're minimising
phrase_g = -np.sum(np.transpose(phrase_g) * sig_y_by_diffs * self.y, axis=1)
interp_g = -np.sum(np.transpose(interp_g) * sig_y_by_diffs * self.y, axis=1)
other_g = -np.sum(np.transpose(other_g) * sig_y_by_diffs * self.y, axis=1)
# regularisation
phrase_g += self.alpha * sw['phrase']
other_g += self.alpha * sw['other']
# Splice the gradients together
grad = np.array([0.0]* len(w))
grad[-len(interp_g):] = interp_g
grad[self.phrase_index[0]:self.phrase_index[1]] = phrase_g
grad[self.other_index[0][0]:self.other_index[0][1]] = \
other_g[:self.other_index[0][1] - self.other_index[0][0]]
grad[self.other_index[1][0]:self.other_index[1][1]] = \
other_g[self.other_index[0][1] - self.other_index[0][0]:]
return grad
def train(self,debug=False):
"""Train the mixture model."""
if debug:
iprint = 0
else:
iprint = -1
# Initialise weights to zero, except interpolation
num_phrase_features = self.phrase_index[1] - self.phrase_index[0]
num_models = ((self.interp_index[1] - self.interp_index[0])/num_phrase_features)+1
w0 = [0.0] * self.interp_index[0]
w0 += [1.0/num_models] * (self.interp_index[1]-self.interp_index[0])
bounds = [(None,None)] * len(w0)
bounds[self.interp_index[0]:self.interp_index[1]] = \
[(self.interp_floor,1)] * (self.interp_index[1] - self.interp_index[0])
w0 = np.array(w0)
x,f,d = fmin_l_bfgs_b(self.objective, w0, fprime=self.gradient, bounds=bounds, pgtol=1e-09, iprint=iprint)
if d['warnflag'] != 0:
raise OptimisationException(d['task'])
weights = x[:self.interp_index[0]]
mix_weights = x[self.interp_index[0]:]
mix_weights = mix_weights.reshape((num_models-1,num_phrase_features))
mix_weights = np.vstack((mix_weights, 1-np.sum(mix_weights,axis=0)))
return weights,mix_weights
#
# Test logistic regression using pro data
#
def main():
fh = open("data/esen.wmt12.pro")
x = []
y = []
d = 14
for line in fh:
line = line[:-1]
fields = line.split()
if fields[0] == "1":
y.append(1)
else:
y.append(-1)
x_i = [0]*d
for i in xrange(1,len(fields),2):
j = int(fields[i][1:])
x_ij = float(fields[i+1])
x_i[j] = x_ij
x.append(x_i)
lro = LogisticRegressionOptimiser(np.array(x), np.array(y), 0.1)
print lro.train(np.zeros(d), debug=True)
if __name__ == "__main__":
main()
|