File size: 7,792 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
/*
* FeatureStats.cpp
* mert - Minimum Error Rate Training
*
* Created by Nicola Bertoldi on 13/05/08.
*
*/
#include "FeatureStats.h"
#include <fstream>
#include <cmath>
#include <stdexcept>
#include <boost/functional/hash.hpp>
#include "util/murmur_hash.hh"
#include "Util.h"
using namespace std;
namespace
{
const int kAvailableSize = 8;
} // namespace
namespace MosesTuning
{
SparseVector::name2id_t SparseVector::m_name_to_id;
SparseVector::id2name_t SparseVector::m_id_to_name;
FeatureStatsType SparseVector::get(const string& name) const
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
if (name2id_iter == m_name_to_id.end()) return 0;
size_t id = name2id_iter->second;
return get(id);
}
FeatureStatsType SparseVector::get(size_t id) const
{
fvector_t::const_iterator fvector_iter = m_fvector.find(id);
if (fvector_iter == m_fvector.end()) return 0;
return fvector_iter->second;
}
void SparseVector::set(const string& name, FeatureStatsType value)
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
size_t id = 0;
if (name2id_iter == m_name_to_id.end()) {
id = m_id_to_name.size();
m_id_to_name.push_back(name);
m_name_to_id[name] = id;
} else {
id = name2id_iter->second;
}
m_fvector[id] = value;
}
void SparseVector::set(size_t id, FeatureStatsType value)
{
assert(m_id_to_name.size() > id);
m_fvector[id] = value;
}
void SparseVector::write(ostream& out, const string& sep) const
{
for (fvector_t::const_iterator i = m_fvector.begin(); i != m_fvector.end(); ++i) {
if (abs(i->second) < 0.00001) continue;
string name = m_id_to_name[i->first];
out << name << sep << i->second << " ";
}
}
void SparseVector::clear()
{
m_fvector.clear();
}
void SparseVector::load(const string& file)
{
ifstream in(file.c_str());
if (!in) {
throw runtime_error("Failed to open sparse weights file: " + file);
}
string line;
while(getline(in,line)) {
if (line[0] == '#') continue;
istringstream linestream(line);
string name;
float value;
linestream >> name;
linestream >> value;
set(name,value);
}
}
SparseVector& SparseVector::operator+=(const SparseVector& rhs)
{
for (fvector_t::const_iterator i = rhs.m_fvector.begin();
i != rhs.m_fvector.end(); ++i) {
m_fvector[i->first] = get(i->first) + (i->second);
}
return *this;
}
SparseVector& SparseVector::operator-=(const SparseVector& rhs)
{
for (fvector_t::const_iterator i = rhs.m_fvector.begin();
i != rhs.m_fvector.end(); ++i) {
m_fvector[i->first] = get(i->first) - (i->second);
}
return *this;
}
FeatureStatsType SparseVector::inner_product(const SparseVector& rhs) const
{
FeatureStatsType product = 0.0;
for (fvector_t::const_iterator i = m_fvector.begin();
i != m_fvector.end(); ++i) {
product += ((i->second) * (rhs.get(i->first)));
}
return product;
}
SparseVector operator-(const SparseVector& lhs, const SparseVector& rhs)
{
SparseVector res(lhs);
res -= rhs;
return res;
}
FeatureStatsType inner_product(const SparseVector& lhs, const SparseVector& rhs)
{
if (lhs.size() >= rhs.size()) {
return rhs.inner_product(lhs);
} else {
return lhs.inner_product(rhs);
}
}
std::vector<std::size_t> SparseVector::feats() const
{
std::vector<std::size_t> toRet;
for(fvector_t::const_iterator iter = m_fvector.begin();
iter!=m_fvector.end();
iter++) {
toRet.push_back(iter->first);
}
return toRet;
}
std::size_t SparseVector::encode(const std::string& name)
{
name2id_t::const_iterator name2id_iter = m_name_to_id.find(name);
size_t id = 0;
if (name2id_iter == m_name_to_id.end()) {
id = m_id_to_name.size();
m_id_to_name.push_back(name);
m_name_to_id[name] = id;
} else {
id = name2id_iter->second;
}
return id;
}
std::string SparseVector::decode(std::size_t id)
{
return m_id_to_name[id];
}
bool operator==(SparseVector const& item1, SparseVector const& item2)
{
return item1.m_fvector==item2.m_fvector;
}
std::size_t hash_value(SparseVector const& item)
{
size_t seed = 0;
for (SparseVector::fvector_t::const_iterator i = item.m_fvector.begin(); i != item.m_fvector.end(); ++i) {
seed = util::MurmurHashNative(&(i->first), sizeof(i->first), seed);
seed = util::MurmurHashNative(&(i->second), sizeof(i->second), seed);
}
return seed;
}
FeatureStats::FeatureStats()
: m_available_size(kAvailableSize), m_entries(0),
m_array(new FeatureStatsType[m_available_size]) {}
FeatureStats::FeatureStats(const size_t size)
: m_available_size(size), m_entries(size),
m_array(new FeatureStatsType[m_available_size])
{
memset(m_array, 0, GetArraySizeWithBytes());
}
FeatureStats::~FeatureStats()
{
delete [] m_array;
}
void FeatureStats::Copy(const FeatureStats &stats)
{
m_available_size = stats.available();
m_entries = stats.size();
m_array = new FeatureStatsType[m_available_size];
memcpy(m_array, stats.getArray(), GetArraySizeWithBytes());
m_map = stats.getSparse();
}
FeatureStats::FeatureStats(const FeatureStats &stats)
{
Copy(stats);
}
FeatureStats& FeatureStats::operator=(const FeatureStats &stats)
{
delete [] m_array;
Copy(stats);
return *this;
}
void FeatureStats::expand()
{
m_available_size *= 2;
featstats_t t_ = new FeatureStatsType[m_available_size];
memcpy(t_, m_array, GetArraySizeWithBytes());
delete [] m_array;
m_array = t_;
}
void FeatureStats::add(FeatureStatsType v)
{
if (isfull()) expand();
m_array[m_entries++]=v;
}
void FeatureStats::addSparse(const string& name, FeatureStatsType v)
{
m_map.set(name,v);
}
void FeatureStats::set(string &theString, const SparseVector& sparseWeights )
{
string substring, stringBuf;
reset();
while (!theString.empty()) {
getNextPound(theString, substring);
// regular feature
if (substring.find("=") == string::npos) {
add(ConvertStringToFeatureStatsType(substring));
}
// sparse feature
else {
size_t separator = substring.find_last_of("=");
addSparse(substring.substr(0,separator), atof(substring.substr(separator+1).c_str()) );
}
}
if (sparseWeights.size()) {
//Merge the sparse features
FeatureStatsType merged = inner_product(sparseWeights, m_map);
add(merged);
/*
cerr << "Merged ";
sparseWeights.write(cerr,"=");
cerr << " and ";
map_.write(cerr,"=");
cerr << " to give " << merged << endl;
*/
m_map.clear();
}
/*
cerr << "FS: ";
for (size_t i = 0; i < entries_; ++i) {
cerr << array_[i] << " ";
}
cerr << endl;*/
}
void FeatureStats::loadbin(istream* is)
{
is->read(reinterpret_cast<char*>(m_array),
static_cast<streamsize>(GetArraySizeWithBytes()));
}
void FeatureStats::loadtxt(istream* is, const SparseVector& sparseWeights)
{
string line;
getline(*is, line);
set(line, sparseWeights);
}
void FeatureStats::savetxt(const string &file)
{
ofstream ofs(file.c_str(), ios::out);
ostream* os = &ofs;
savetxt(os);
}
void FeatureStats::savetxt(ostream* os)
{
*os << *this;
}
void FeatureStats::savetxt()
{
savetxt(&cout);
}
void FeatureStats::savebin(ostream* os)
{
os->write(reinterpret_cast<char*>(m_array),
static_cast<streamsize>(GetArraySizeWithBytes()));
}
ostream& operator<<(ostream& o, const FeatureStats& e)
{
// print regular features
for (size_t i=0; i< e.size(); i++) {
o << e.get(i) << " ";
}
// sparse features
e.getSparse().write(o,"");
return o;
}
bool operator==(const FeatureStats& f1, const FeatureStats& f2)
{
size_t size = f1.size();
if (size != f2.size())
return false;
for (size_t k=0; k < size; k++) {
if (f1.get(k) != f2.get(k))
return false;
}
return true;
}
}
|