File size: 16,214 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2014- University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <cmath>
#include <limits>
#include <list>
#include <boost/unordered_set.hpp>
#include "util/file_piece.hh"
#include "util/tokenize_piece.hh"
#include "BleuScorer.h"
#include "ForestRescore.h"
using namespace std;
namespace MosesTuning
{
std::ostream& operator<<(std::ostream& out, const WordVec& wordVec)
{
out << "[";
for (size_t i = 0; i < wordVec.size(); ++i) {
out << wordVec[i]->first;
if (i+1< wordVec.size()) out << " ";
}
out << "]";
return out;
}
void ReferenceSet::Load(const vector<string>& files, Vocab& vocab)
{
for (size_t i = 0; i < files.size(); ++i) {
util::FilePiece fh(files[i].c_str());
size_t sentenceId = 0;
while(true) {
StringPiece line;
try {
line = fh.ReadLine();
} catch (util::EndOfFileException &e) {
break;
}
AddLine(sentenceId, line, vocab);
++sentenceId;
}
}
}
void ReferenceSet::AddLine(size_t sentenceId, const StringPiece& line, Vocab& vocab)
{
//cerr << line << endl;
NgramCounter ngramCounts;
list<WordVec> openNgrams;
size_t length = 0;
//tokenize & count
for (util::TokenIter<util::SingleCharacter, true> j(line, util::SingleCharacter(' ')); j; ++j) {
const Vocab::Entry* nextTok = &(vocab.FindOrAdd(*j));
++length;
openNgrams.push_front(WordVec());
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
k->push_back(nextTok);
++ngramCounts[*k];
}
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
}
//merge into overall ngram map
for (NgramCounter::const_iterator ni = ngramCounts.begin();
ni != ngramCounts.end(); ++ni) {
size_t count = ni->second;
//cerr << *ni << " " << count << endl;
if (ngramCounts_.size() <= sentenceId) ngramCounts_.resize(sentenceId+1);
NgramMap::iterator totalsIter = ngramCounts_[sentenceId].find(ni->first);
if (totalsIter == ngramCounts_[sentenceId].end()) {
ngramCounts_[sentenceId][ni->first] = pair<size_t,size_t>(count,count);
} else {
ngramCounts_[sentenceId][ni->first].first = max(count, ngramCounts_[sentenceId][ni->first].first); //clip
ngramCounts_[sentenceId][ni->first].second += count; //no clip
}
}
//length
if (lengths_.size() <= sentenceId) lengths_.resize(sentenceId+1);
//TODO - length strategy - this is MIN
if (!lengths_[sentenceId]) {
lengths_[sentenceId] = length;
} else {
lengths_[sentenceId] = min(length,lengths_[sentenceId]);
}
//cerr << endl;
}
size_t ReferenceSet::NgramMatches(size_t sentenceId, const WordVec& ngram, bool clip) const
{
const NgramMap& ngramCounts = ngramCounts_.at(sentenceId);
NgramMap::const_iterator ngi = ngramCounts.find(ngram);
if (ngi == ngramCounts.end()) return 0;
return clip ? ngi->second.first : ngi->second.second;
}
VertexState::VertexState(): bleuStats(kBleuNgramOrder), targetLength(0) {}
void HgBleuScorer::UpdateMatches(const NgramCounter& counts, vector<FeatureStatsType>& bleuStats ) const
{
for (NgramCounter::const_iterator ngi = counts.begin(); ngi != counts.end(); ++ngi) {
//cerr << "Checking: " << *ngi << " matches " << references_.NgramMatches(sentenceId_,*ngi,false) << endl;
size_t order = ngi->first.size();
size_t count = ngi->second;
bleuStats[(order-1)*2 + 1] += count;
bleuStats[(order-1) * 2] += min(count, references_.NgramMatches(sentenceId_,ngi->first,false));
}
}
size_t HgBleuScorer::GetTargetLength(const Edge& edge) const
{
size_t targetLength = 0;
for (size_t i = 0; i < edge.Words().size(); ++i) {
const Vocab::Entry* word = edge.Words()[i];
if (word) ++targetLength;
}
for (size_t i = 0; i < edge.Children().size(); ++i) {
const VertexState& state = vertexStates_[edge.Children()[i]];
targetLength += state.targetLength;
}
return targetLength;
}
FeatureStatsType HgBleuScorer::Score(const Edge& edge, const Vertex& head, vector<FeatureStatsType>& bleuStats)
{
NgramCounter ngramCounts;
size_t childId = 0;
size_t wordId = 0;
size_t contextId = 0; //position within left or right context
const VertexState* vertexState = NULL;
bool inLeftContext = false;
bool inRightContext = false;
list<WordVec> openNgrams;
const Vocab::Entry* currentWord = NULL;
while (wordId < edge.Words().size()) {
currentWord = edge.Words()[wordId];
if (currentWord != NULL) {
++wordId;
} else {
if (!inLeftContext && !inRightContext) {
//entering a vertex
assert(!vertexState);
vertexState = &(vertexStates_[edge.Children()[childId]]);
++childId;
if (vertexState->leftContext.size()) {
inLeftContext = true;
contextId = 0;
currentWord = vertexState->leftContext[contextId];
} else {
//empty context
vertexState = NULL;
++wordId;
continue;
}
} else {
//already in a vertex
++contextId;
if (inLeftContext && contextId < vertexState->leftContext.size()) {
//still in left context
currentWord = vertexState->leftContext[contextId];
} else if (inLeftContext) {
//at end of left context
if (vertexState->leftContext.size() == kBleuNgramOrder-1) {
//full size context, jump to right state
openNgrams.clear();
inLeftContext = false;
inRightContext = true;
contextId = 0;
currentWord = vertexState->rightContext[contextId];
} else {
//short context, just ignore right context
inLeftContext = false;
vertexState = NULL;
++wordId;
continue;
}
} else {
//in right context
if (contextId < vertexState->rightContext.size()) {
currentWord = vertexState->rightContext[contextId];
} else {
//leaving vertex
inRightContext = false;
vertexState = NULL;
++wordId;
continue;
}
}
}
}
assert(currentWord);
if (graph_.IsBoundary(currentWord)) continue;
openNgrams.push_front(WordVec());
openNgrams.front().reserve(kBleuNgramOrder);
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
k->push_back(currentWord);
//Only insert ngrams that cross boundaries
if (!vertexState || (inLeftContext && k->size() > contextId+1)) ++ngramCounts[*k];
}
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
}
//Collect matches
//This edge
//cerr << "edge ngrams" << endl;
UpdateMatches(ngramCounts, bleuStats);
//Child vertexes
for (size_t i = 0; i < edge.Children().size(); ++i) {
//cerr << "vertex ngrams " << edge.Children()[i] << endl;
for (size_t j = 0; j < bleuStats.size(); ++j) {
bleuStats[j] += vertexStates_[edge.Children()[i]].bleuStats[j];
}
}
FeatureStatsType sourceLength = head.SourceCovered();
size_t referenceLength = references_.Length(sentenceId_);
FeatureStatsType effectiveReferenceLength =
sourceLength / totalSourceLength_ * referenceLength;
bleuStats[bleuStats.size()-1] = effectiveReferenceLength;
//backgroundBleu_[backgroundBleu_.size()-1] =
// backgroundRefLength_ * sourceLength / totalSourceLength_;
FeatureStatsType bleu = sentenceLevelBackgroundBleu(bleuStats, backgroundBleu_);
return bleu;
}
void HgBleuScorer::UpdateState(const Edge& winnerEdge, size_t vertexId, const vector<FeatureStatsType>& bleuStats)
{
//TODO: Maybe more efficient to absorb into the Score() method
VertexState& vertexState = vertexStates_[vertexId];
//cerr << "Updating state for " << vertexId << endl;
//leftContext
int wi = 0;
const VertexState* childState = NULL;
int contexti = 0; //index within child context
int childi = 0;
while (vertexState.leftContext.size() < (kBleuNgramOrder-1)) {
if ((size_t)wi >= winnerEdge.Words().size()) break;
const Vocab::Entry* word = winnerEdge.Words()[wi];
if (word != NULL) {
vertexState.leftContext.push_back(word);
++wi;
} else {
if (childState == NULL) {
//start of child state
childState = &(vertexStates_[winnerEdge.Children()[childi++]]);
contexti = 0;
}
if ((size_t)contexti < childState->leftContext.size()) {
vertexState.leftContext.push_back(childState->leftContext[contexti++]);
} else {
//end of child context
childState = NULL;
++wi;
}
}
}
//rightContext
wi = winnerEdge.Words().size() - 1;
childState = NULL;
childi = winnerEdge.Children().size() - 1;
while (vertexState.rightContext.size() < (kBleuNgramOrder-1)) {
if (wi < 0) break;
const Vocab::Entry* word = winnerEdge.Words()[wi];
if (word != NULL) {
vertexState.rightContext.push_back(word);
--wi;
} else {
if (childState == NULL) {
//start (ie rhs) of child state
childState = &(vertexStates_[winnerEdge.Children()[childi--]]);
contexti = childState->rightContext.size()-1;
}
if (contexti >= 0) {
vertexState.rightContext.push_back(childState->rightContext[contexti--]);
} else {
//end (ie lhs) of child context
childState = NULL;
--wi;
}
}
}
reverse(vertexState.rightContext.begin(), vertexState.rightContext.end());
//length + counts
vertexState.targetLength = GetTargetLength(winnerEdge);
vertexState.bleuStats = bleuStats;
}
typedef pair<const Edge*,FeatureStatsType> BackPointer;
/**
* Recurse through back pointers
**/
static void GetBestHypothesis(size_t vertexId, const Graph& graph, const vector<BackPointer>& bps,
HgHypothesis* bestHypo)
{
//cerr << "Expanding " << vertexId << " Score: " << bps[vertexId].second << endl;
//UTIL_THROW_IF(bps[vertexId].second == kMinScore+1, HypergraphException, "Landed at vertex " << vertexId << " which is a dead end");
if (!bps[vertexId].first) return;
const Edge* prevEdge = bps[vertexId].first;
bestHypo->featureVector += *(prevEdge->Features().get());
size_t childId = 0;
for (size_t i = 0; i < prevEdge->Words().size(); ++i) {
if (prevEdge->Words()[i] != NULL) {
bestHypo->text.push_back(prevEdge->Words()[i]);
} else {
size_t childVertexId = prevEdge->Children()[childId++];
HgHypothesis childHypo;
GetBestHypothesis(childVertexId,graph,bps,&childHypo);
bestHypo->text.insert(bestHypo->text.end(), childHypo.text.begin(), childHypo.text.end());
bestHypo->featureVector += childHypo.featureVector;
}
}
}
void Viterbi(const Graph& graph, const SparseVector& weights, float bleuWeight, const ReferenceSet& references , size_t sentenceId, const std::vector<FeatureStatsType>& backgroundBleu, HgHypothesis* bestHypo)
{
BackPointer init((const Edge*) NULL,kMinScore);
vector<BackPointer> backPointers(graph.VertexSize(),init);
HgBleuScorer bleuScorer(references, graph, sentenceId, backgroundBleu);
vector<FeatureStatsType> winnerStats(kBleuNgramOrder*2+1);
for (size_t vi = 0; vi < graph.VertexSize(); ++vi) {
// cerr << "vertex id " << vi << endl;
FeatureStatsType winnerScore = kMinScore;
const Vertex& vertex = graph.GetVertex(vi);
const vector<const Edge*>& incoming = vertex.GetIncoming();
if (!incoming.size()) {
//UTIL_THROW(HypergraphException, "Vertex " << vi << " has no incoming edges");
//If no incoming edges, vertex is a dead end
backPointers[vi].first = NULL;
backPointers[vi].second = kMinScore;
} else {
//cerr << "\nVertex: " << vi << endl;
for (size_t ei = 0; ei < incoming.size(); ++ei) {
//cerr << "edge id " << ei << endl;
FeatureStatsType incomingScore = incoming[ei]->GetScore(weights);
for (size_t i = 0; i < incoming[ei]->Children().size(); ++i) {
size_t childId = incoming[ei]->Children()[i];
//UTIL_THROW_IF(backPointers[childId].second == kMinScore,
// HypergraphException, "Graph was not topologically sorted. curr=" << vi << " prev=" << childId);
incomingScore = max(incomingScore + backPointers[childId].second, kMinScore);
}
vector<FeatureStatsType> bleuStats(kBleuNgramOrder*2+1);
// cerr << "Score: " << incomingScore << " Bleu: ";
// if (incomingScore > nonbleuscore) {nonbleuscore = incomingScore; nonbleuid = ei;}
FeatureStatsType totalScore = incomingScore;
if (bleuWeight) {
FeatureStatsType bleuScore = bleuScorer.Score(*(incoming[ei]), vertex, bleuStats);
if (isnan(bleuScore)) {
cerr << "WARN: bleu score undefined" << endl;
cerr << "\tVertex id : " << vi << endl;
cerr << "\tBleu stats : ";
for (size_t i = 0; i < bleuStats.size(); ++i) {
cerr << bleuStats[i] << ",";
}
cerr << endl;
bleuScore = 0;
}
//UTIL_THROW_IF(isnan(bleuScore), util::Exception, "Bleu score undefined, smoothing problem?");
totalScore += bleuWeight * bleuScore;
// cerr << bleuScore << " Total: " << incomingScore << endl << endl;
//cerr << "is " << incomingScore << " bs " << bleuScore << endl;
}
if (totalScore >= winnerScore) {
//We only store the feature score (not the bleu score) with the vertex,
//since the bleu score is always cumulative, ie from counts for the whole span.
winnerScore = totalScore;
backPointers[vi].first = incoming[ei];
backPointers[vi].second = incomingScore;
winnerStats = bleuStats;
}
}
//update with winner
//if (bleuWeight) {
//TODO: Not sure if we need this when computing max-model solution
if (backPointers[vi].first) {
bleuScorer.UpdateState(*(backPointers[vi].first), vi, winnerStats);
}
}
// cerr << "backpointer[" << vi << "] = (" << backPointers[vi].first << "," << backPointers[vi].second << ")" << endl;
}
//expand back pointers
GetBestHypothesis(graph.VertexSize()-1, graph, backPointers, bestHypo);
//bleu stats and fv
//Need the actual (clipped) stats
//TODO: This repeats code in bleu scorer - factor out
bestHypo->bleuStats.resize(kBleuNgramOrder*2+1);
NgramCounter counts;
list<WordVec> openNgrams;
for (size_t i = 0; i < bestHypo->text.size(); ++i) {
const Vocab::Entry* entry = bestHypo->text[i];
if (graph.IsBoundary(entry)) continue;
openNgrams.push_front(WordVec());
for (list<WordVec>::iterator k = openNgrams.begin(); k != openNgrams.end(); ++k) {
k->push_back(entry);
++counts[*k];
}
if (openNgrams.size() >= kBleuNgramOrder) openNgrams.pop_back();
}
for (NgramCounter::const_iterator ngi = counts.begin(); ngi != counts.end(); ++ngi) {
size_t order = ngi->first.size();
size_t count = ngi->second;
bestHypo->bleuStats[(order-1)*2 + 1] += count;
bestHypo->bleuStats[(order-1) * 2] += min(count, references.NgramMatches(sentenceId,ngi->first,true));
}
bestHypo->bleuStats[kBleuNgramOrder*2] = references.Length(sentenceId);
}
};
|