File size: 12,044 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2014- University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <iostream>
#include <set>
#include <boost/lexical_cast.hpp>
#include "util/double-conversion/double-conversion.h"
#include "util/string_piece.hh"
#include "util/tokenize_piece.hh"
#include "Hypergraph.h"
using namespace std;
static const string kBOS = "<s>";
static const string kEOS = "</s>";
namespace MosesTuning
{
StringPiece NextLine(util::FilePiece& from)
{
StringPiece line;
while ((line = from.ReadLine()).starts_with("#"));
return line;
}
Vocab::Vocab() : eos_( FindOrAdd(kEOS)), bos_(FindOrAdd(kBOS))
{
}
const Vocab::Entry &Vocab::FindOrAdd(const StringPiece &str)
{
#if BOOST_VERSION >= 104200
Map::const_iterator i= map_.find(str, Hash(), Equals());
#else
std::string copied_str(str.data(), str.size());
Map::const_iterator i = map_.find(copied_str.c_str());
#endif
if (i != map_.end()) return *i;
char *copied = static_cast<char*>(piece_backing_.Allocate(str.size() + 1));
memcpy(copied, str.data(), str.size());
copied[str.size()] = 0;
return *map_.insert(Entry(copied, map_.size())).first;
}
double_conversion::StringToDoubleConverter converter(double_conversion::StringToDoubleConverter::NO_FLAGS, NAN, NAN, "inf", "nan");
/**
* Reads an incoming edge. Returns edge and source words covered.
**/
static pair<Edge*,size_t> ReadEdge(util::FilePiece &from, Graph &graph)
{
Edge* edge = graph.NewEdge();
StringPiece line = from.ReadLine(); //Don't allow comments within edge lists
util::TokenIter<util::MultiCharacter> pipes(line, util::MultiCharacter(" ||| "));
//Target
for (util::TokenIter<util::SingleCharacter, true> i(*pipes, util::SingleCharacter(' ')); i; ++i) {
StringPiece got = *i;
if ('[' == *got.data() && ']' == got.data()[got.size() - 1]) {
// non-terminal
char *end_ptr;
unsigned long int child = std::strtoul(got.data() + 1, &end_ptr, 10);
UTIL_THROW_IF(end_ptr != got.data() + got.size() - 1, HypergraphException, "Bad non-terminal" << got);
UTIL_THROW_IF(child >= graph.VertexSize(), HypergraphException, "Reference to vertex " << child << " but we only have " << graph.VertexSize() << " vertices. Is the file in bottom-up format?");
edge->AddWord(NULL);
edge->AddChild(child);
} else {
const Vocab::Entry &found = graph.MutableVocab().FindOrAdd(got);
edge->AddWord(&found);
}
}
//Features
++pipes;
for (util::TokenIter<util::SingleCharacter, true> i(*pipes, util::SingleCharacter(' ')); i; ++i) {
StringPiece fv = *i;
if (!fv.size()) break;
size_t equals = fv.find_last_of("=");
UTIL_THROW_IF(equals == fv.npos, HypergraphException, "Failed to parse feature '" << fv << "'");
StringPiece name = fv.substr(0,equals);
StringPiece value = fv.substr(equals+1);
int processed;
float score = converter.StringToFloat(value.data(), value.length(), &processed);
UTIL_THROW_IF(isnan(score), HypergraphException, "Failed to parse weight '" << value << "'");
edge->AddFeature(name,score);
}
//Covered words
++pipes;
size_t sourceCovered = boost::lexical_cast<size_t>(*pipes);
return pair<Edge*,size_t>(edge,sourceCovered);
}
void Graph::Prune(Graph* pNewGraph, const SparseVector& weights, size_t minEdgeCount) const
{
Graph& newGraph = *pNewGraph;
//TODO: Optimise case where no pruning required
//For debug
/*
map<const Edge*, string> edgeIds;
for (size_t i = 0; i < edges_.Size(); ++i) {
stringstream str;
size_t childId = 0;
for (size_t j = 0; j < edges_[i].Words().size(); ++j) {
if (edges_[i].Words()[j]) {
str << edges_[i].Words()[j]->first << " ";
} else {
str << "[" << edges_[i].Children()[childId++] << "] ";
}
}
edgeIds[&(edges_[i])] = str.str();
}
*/
//end For debug
map<const Edge*, FeatureStatsType> edgeBackwardScores;
map<const Edge*, size_t> edgeHeads;
vector<FeatureStatsType> vertexBackwardScores(vertices_.Size(), kMinScore);
vector<vector<const Edge*> > outgoing(vertices_.Size());
//Compute backward scores
for (size_t vi = 0; vi < vertices_.Size(); ++vi) {
// cerr << "Vertex " << vi << endl;
const Vertex& vertex = vertices_[vi];
const vector<const Edge*>& incoming = vertex.GetIncoming();
if (!incoming.size()) {
vertexBackwardScores[vi] = 0;
} else {
for (size_t ei = 0; ei < incoming.size(); ++ei) {
//cerr << "Edge " << edgeIds[incoming[ei]] << endl;
edgeHeads[incoming[ei]]= vi;
FeatureStatsType incomingScore = incoming[ei]->GetScore(weights);
for (size_t i = 0; i < incoming[ei]->Children().size(); ++i) {
//cerr << "\tChild " << incoming[ei]->Children()[i] << endl;
size_t childId = incoming[ei]->Children()[i];
UTIL_THROW_IF(vertexBackwardScores[childId] == kMinScore,
HypergraphException, "Graph was not topologically sorted. curr=" << vi << " prev=" << childId);
outgoing[childId].push_back(incoming[ei]);
incomingScore += vertexBackwardScores[childId];
}
edgeBackwardScores[incoming[ei]]= incomingScore;
//cerr << "Backward score: " << incomingScore << endl;
if (incomingScore > vertexBackwardScores[vi]) vertexBackwardScores[vi] = incomingScore;
}
}
}
//Compute forward scores
vector<FeatureStatsType> vertexForwardScores(vertices_.Size(), kMinScore);
map<const Edge*, FeatureStatsType> edgeForwardScores;
for (size_t i = 1; i <= vertices_.Size(); ++i) {
size_t vi = vertices_.Size() - i;
//cerr << "Vertex " << vi << endl;
if (!outgoing[vi].size()) {
vertexForwardScores[vi] = 0;
} else {
for (size_t ei = 0; ei < outgoing[vi].size(); ++ei) {
//cerr << "Edge " << edgeIds[outgoing[vi][ei]] << endl;
FeatureStatsType outgoingScore = 0;
//add score of head
outgoingScore += vertexForwardScores[edgeHeads[outgoing[vi][ei]]];
//cerr << "Forward score " << outgoingScore << endl;
edgeForwardScores[outgoing[vi][ei]] = outgoingScore;
//sum scores of siblings
for (size_t i = 0; i < outgoing[vi][ei]->Children().size(); ++i) {
size_t siblingId = outgoing[vi][ei]->Children()[i];
if (siblingId != vi) {
//cerr << "\tSibling " << siblingId << endl;
outgoingScore += vertexBackwardScores[siblingId];
}
}
outgoingScore += outgoing[vi][ei]->GetScore(weights);
if (outgoingScore > vertexForwardScores[vi]) vertexForwardScores[vi] = outgoingScore;
//cerr << "Vertex " << vi << " forward score " << outgoingScore << endl;
}
}
}
multimap<FeatureStatsType, const Edge*> edgeScores;
for (size_t i = 0; i < edges_.Size(); ++i) {
const Edge* edge = &(edges_[i]);
if (edgeForwardScores.find(edge) == edgeForwardScores.end()) {
//This edge has no children, so didn't get a forward score. Its forward score
//is that of its head
edgeForwardScores[edge] = vertexForwardScores[edgeHeads[edge]];
}
FeatureStatsType score = edgeForwardScores[edge] + edgeBackwardScores[edge];
edgeScores.insert(pair<FeatureStatsType, const Edge*>(score,edge));
// cerr << edgeIds[edge] << " " << score << endl;
}
multimap<FeatureStatsType, const Edge*>::const_reverse_iterator ei = edgeScores.rbegin();
size_t edgeCount = 1;
while(edgeCount < minEdgeCount && ei != edgeScores.rend()) {
++ei;
++edgeCount;
}
multimap<FeatureStatsType, const Edge*>::const_iterator lowest = edgeScores.begin();
if (ei != edgeScores.rend()) lowest = edgeScores.lower_bound(ei->first);
//cerr << "Retained edges" << endl;
set<size_t> retainedVertices;
set<const Edge*> retainedEdges;
for (; lowest != edgeScores.end(); ++lowest) {
//cerr << lowest->first << " " << edgeIds[lowest->second] << endl;
retainedEdges.insert(lowest->second);
retainedVertices.insert(edgeHeads[lowest->second]);
for (size_t i = 0; i < lowest->second->Children().size(); ++i) {
retainedVertices.insert(lowest->second->Children()[i]);
}
}
newGraph.SetCounts(retainedVertices.size(), retainedEdges.size());
//cerr << "Retained vertices" << endl;
map<size_t,size_t> oldIdToNew;
size_t vi = 0;
for (set<size_t>::const_iterator i = retainedVertices.begin(); i != retainedVertices.end(); ++i, ++vi) {
// cerr << *i << " New: " << vi << endl;
oldIdToNew[*i] = vi;
Vertex* vertex = newGraph.NewVertex();
vertex->SetSourceCovered(vertices_[*i].SourceCovered());
}
for (set<const Edge*>::const_iterator i = retainedEdges.begin(); i != retainedEdges.end(); ++i) {
Edge* newEdge = newGraph.NewEdge();
const Edge* oldEdge = *i;
for (size_t j = 0; j < oldEdge->Words().size(); ++j) {
newEdge->AddWord(oldEdge->Words()[j]);
}
for (size_t j = 0; j < oldEdge->Children().size(); ++j) {
newEdge->AddChild(oldIdToNew[oldEdge->Children()[j]]);
}
newEdge->SetFeatures(oldEdge->Features());
Vertex& newHead = newGraph.vertices_[oldIdToNew[edgeHeads[oldEdge]]];
newHead.AddEdge(newEdge);
}
/*
cerr << "New graph" << endl;
for (size_t vi = 0; vi < newGraph.VertexSize(); ++vi) {
cerr << "Vertex " << vi << endl;
const vector<const Edge*> incoming = newGraph.GetVertex(vi).GetIncoming();
for (size_t ei = 0; ei < incoming.size(); ++ei) {
size_t childId = 0;
for (size_t wi = 0; wi < incoming[ei]->Words().size(); ++wi) {
const Vocab::Entry* word = incoming[ei]->Words()[wi];
if (word) {
cerr << word->first << " ";
} else {
cerr << "[" << incoming[ei]->Children()[childId++] << "] ";
}
}
cerr << " Score: " << incoming[ei]->GetScore(weights) << endl;
}
cerr << endl;
}
*/
}
/**
* Read from "Kenneth's hypergraph" aka cdec target_graph format (with comments)
**/
void ReadGraph(util::FilePiece &from, Graph &graph)
{
//First line should contain field names
StringPiece line = from.ReadLine();
UTIL_THROW_IF(line.compare("# target ||| features ||| source-covered") != 0, HypergraphException, "Incorrect format spec on first line: '" << line << "'");
line = NextLine(from);
//Then expect numbers of vertices
util::TokenIter<util::SingleCharacter, false> i(line, util::SingleCharacter(' '));
unsigned long int vertices = boost::lexical_cast<unsigned long int>(*i);
++i;
unsigned long int edges = boost::lexical_cast<unsigned long int>(*i);
graph.SetCounts(vertices, edges);
//cerr << "vertices: " << vertices << "; edges: " << edges << endl;
for (size_t i = 0; i < vertices; ++i) {
line = NextLine(from);
unsigned long int edge_count = boost::lexical_cast<unsigned long int>(line);
Vertex* vertex = graph.NewVertex();
for (unsigned long int e = 0; e < edge_count; ++e) {
pair<Edge*,size_t> edge = ReadEdge(from, graph);
vertex->AddEdge(edge.first);
//Note: the file format attaches this to the edge, but it's really a property
//of the vertex.
if (!e) {
vertex->SetSourceCovered(edge.second);
}
}
}
}
};
|