File size: 14,537 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
// $Id$
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include <limits>
#include <utility>
#include "BitmapContainer.h"
#include "HypothesisStackCubePruning.h"
#include "moses/FF/DistortionScoreProducer.h"
#include "TranslationOptionList.h"
#include "Manager.h"
namespace Moses
{
class HypothesisScoreOrdererNoDistortion
{
public:
bool operator()(const Hypothesis* hypoA, const Hypothesis* hypoB) const {
const float scoreA = hypoA->GetScore();
const float scoreB = hypoB->GetScore();
if (scoreA > scoreB) {
return true;
} else if (scoreA < scoreB) {
return false;
} else {
return hypoA < hypoB;
}
}
};
class HypothesisScoreOrdererWithDistortion
{
private:
bool m_deterministic;
public:
HypothesisScoreOrdererWithDistortion(const Range* transOptRange,
const bool deterministic = false)
: m_deterministic(deterministic)
, m_transOptRange(transOptRange) {
m_totalWeightDistortion = 0;
const StaticData &staticData = StaticData::Instance();
const std::vector<const DistortionScoreProducer*> &ffs = DistortionScoreProducer::GetDistortionFeatureFunctions();
std::vector<const DistortionScoreProducer*>::const_iterator iter;
for (iter = ffs.begin(); iter != ffs.end(); ++iter) {
const DistortionScoreProducer *ff = *iter;
float weight =staticData.GetAllWeights().GetScoreForProducer(ff);
m_totalWeightDistortion += weight;
}
}
const Range* m_transOptRange;
float m_totalWeightDistortion;
bool operator()(const Hypothesis* hypoA, const Hypothesis* hypoB) const {
UTIL_THROW_IF2(m_transOptRange == NULL, "Words range not set");
const float distortionScoreA = DistortionScoreProducer::CalculateDistortionScore(
*hypoA,
hypoA->GetCurrSourceWordsRange(),
*m_transOptRange,
hypoA->GetWordsBitmap().GetFirstGapPos()
);
const float distortionScoreB = DistortionScoreProducer::CalculateDistortionScore(
*hypoB,
hypoB->GetCurrSourceWordsRange(),
*m_transOptRange,
hypoB->GetWordsBitmap().GetFirstGapPos()
);
const float scoreA = hypoA->GetScore() + distortionScoreA * m_totalWeightDistortion;
const float scoreB = hypoB->GetScore() + distortionScoreB * m_totalWeightDistortion;
if (scoreA > scoreB) {
return true;
} else if (scoreA < scoreB) {
return false;
} else {
if (m_deterministic) {
// Equal scores: break ties by comparing target phrases
return (hypoA->GetCurrTargetPhrase().Compare(hypoB->GetCurrTargetPhrase()) < 0);
}
// Fallback: non-deterministic sort
return hypoA < hypoB;
}
}
};
////////////////////////////////////////////////////////////////////////////////
// BackwardsEdge Code
////////////////////////////////////////////////////////////////////////////////
BackwardsEdge::BackwardsEdge(const BitmapContainer &prevBitmapContainer
, BitmapContainer &parent
, const TranslationOptionList &translations
, const SquareMatrix &estimatedScores,
const InputType& itype,
const bool deterministic)
: m_initialized(false)
, m_prevBitmapContainer(prevBitmapContainer)
, m_parent(parent)
, m_translations(translations)
, m_estimatedScores(estimatedScores)
, m_deterministic(deterministic)
, m_seenPosition()
{
// If either dimension is empty, we haven't got anything to do.
if(m_prevBitmapContainer.GetHypotheses().size() == 0 || m_translations.size() == 0) {
VERBOSE(3, "Empty cube on BackwardsEdge" << std::endl);
return;
}
// Fetch the things we need for distortion cost computation.
// int maxDistortion = StaticData::Instance().GetMaxDistortion();
int maxDistortion = itype.options()->reordering.max_distortion;
if (maxDistortion == -1) {
for (HypothesisSet::const_iterator iter = m_prevBitmapContainer.GetHypotheses().begin(); iter != m_prevBitmapContainer.GetHypotheses().end(); ++iter) {
m_hypotheses.push_back(*iter);
}
return;
}
const Range &transOptRange = translations.Get(0)->GetSourceWordsRange();
HypothesisSet::const_iterator iterHypo = m_prevBitmapContainer.GetHypotheses().begin();
HypothesisSet::const_iterator iterEnd = m_prevBitmapContainer.GetHypotheses().end();
while (iterHypo != iterEnd) {
const Hypothesis &hypo = **iterHypo;
// Special case: If this is the first hypothesis used to seed the search,
// it doesn't have a valid range, and we create the hypothesis, if the
// initial position is not further into the sentence than the distortion limit.
if (hypo.GetWordsBitmap().GetNumWordsCovered() == 0) {
if ((int)transOptRange.GetStartPos() <= maxDistortion)
m_hypotheses.push_back(&hypo);
} else {
int distortionDistance = itype.ComputeDistortionDistance(hypo.GetCurrSourceWordsRange()
, transOptRange);
if (distortionDistance <= maxDistortion)
m_hypotheses.push_back(&hypo);
}
++iterHypo;
}
if (m_translations.size() > 1) {
UTIL_THROW_IF2(m_translations.Get(0)->GetFutureScore() < m_translations.Get(1)->GetFutureScore(),
"Non-monotonic future score: "
<< m_translations.Get(0)->GetFutureScore() << " vs. "
<< m_translations.Get(1)->GetFutureScore());
}
if (m_hypotheses.size() > 1) {
UTIL_THROW_IF2(m_hypotheses[0]->GetFutureScore() < m_hypotheses[1]->GetFutureScore(),
"Non-monotonic total score"
<< m_hypotheses[0]->GetFutureScore() << " vs. "
<< m_hypotheses[1]->GetFutureScore());
}
HypothesisScoreOrdererWithDistortion orderer (&transOptRange, m_deterministic);
std::sort(m_hypotheses.begin(), m_hypotheses.end(), orderer);
// std::sort(m_hypotheses.begin(), m_hypotheses.end(), HypothesisScoreOrdererNoDistortion());
}
BackwardsEdge::~BackwardsEdge()
{
m_seenPosition.clear();
m_hypotheses.clear();
}
void
BackwardsEdge::Initialize()
{
if(m_hypotheses.size() == 0 || m_translations.size() == 0) {
m_initialized = true;
return;
}
const Bitmap &bm = m_hypotheses[0]->GetWordsBitmap();
const Range &newRange = m_translations.Get(0)->GetSourceWordsRange();
m_estimatedScore = m_estimatedScores.CalcEstimatedScore(bm, newRange.GetStartPos(), newRange.GetEndPos());
Hypothesis *expanded = CreateHypothesis(*m_hypotheses[0], *m_translations.Get(0));
m_parent.Enqueue(0, 0, expanded, this);
SetSeenPosition(0, 0);
m_initialized = true;
}
Hypothesis *BackwardsEdge::CreateHypothesis(const Hypothesis &hypothesis, const TranslationOption &transOpt)
{
// create hypothesis and calculate all its scores
IFVERBOSE(2) {
hypothesis.GetManager().GetSentenceStats().StartTimeBuildHyp();
}
const Bitmap &bitmap = m_parent.GetWordsBitmap();
Hypothesis *newHypo = new Hypothesis(hypothesis, transOpt, bitmap, hypothesis.GetManager().GetNextHypoId());
IFVERBOSE(2) {
hypothesis.GetManager().GetSentenceStats().StopTimeBuildHyp();
}
newHypo->EvaluateWhenApplied(m_estimatedScore);
return newHypo;
}
bool
BackwardsEdge::SeenPosition(const size_t x, const size_t y)
{
boost::unordered_set< int >::iterator iter = m_seenPosition.find((x<<16) + y);
return (iter != m_seenPosition.end());
}
void
BackwardsEdge::SetSeenPosition(const size_t x, const size_t y)
{
UTIL_THROW_IF2(x >= (1<<17), "Error");
UTIL_THROW_IF2(y >= (1<<17), "Error");
m_seenPosition.insert((x<<16) + y);
}
bool
BackwardsEdge::GetInitialized()
{
return m_initialized;
}
const BitmapContainer&
BackwardsEdge::GetBitmapContainer() const
{
return m_prevBitmapContainer;
}
void
BackwardsEdge::PushSuccessors(const size_t x, const size_t y)
{
Hypothesis *newHypo;
if(y + 1 < m_translations.size() && !SeenPosition(x, y + 1)) {
SetSeenPosition(x, y + 1);
newHypo = CreateHypothesis(*m_hypotheses[x], *m_translations.Get(y + 1));
if(newHypo != NULL) {
m_parent.Enqueue(x, y + 1, newHypo, (BackwardsEdge*)this);
}
}
if(x + 1 < m_hypotheses.size() && !SeenPosition(x + 1, y)) {
SetSeenPosition(x + 1, y);
newHypo = CreateHypothesis(*m_hypotheses[x + 1], *m_translations.Get(y));
if(newHypo != NULL) {
m_parent.Enqueue(x + 1, y, newHypo, (BackwardsEdge*)this);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// BitmapContainer Code
////////////////////////////////////////////////////////////////////////////////
BitmapContainer::BitmapContainer(const Bitmap &bitmap
, HypothesisStackCubePruning &stack
, bool deterministic)
: m_bitmap(bitmap)
, m_stack(stack)
, m_numStackInsertions(0)
, m_deterministic(deterministic)
{
m_hypotheses = HypothesisSet();
m_edges = BackwardsEdgeSet();
m_queue = HypothesisQueue();
}
BitmapContainer::~BitmapContainer()
{
// As we have created the square position objects we clean up now.
while (!m_queue.empty()) {
HypothesisQueueItem *item = m_queue.top();
m_queue.pop();
delete item->GetHypothesis();
delete item;
}
// Delete all edges.
RemoveAllInColl(m_edges);
m_hypotheses.clear();
m_edges.clear();
}
void
BitmapContainer::Enqueue(int hypothesis_pos
, int translation_pos
, Hypothesis *hypothesis
, BackwardsEdge *edge)
{
// Only supply target phrase if running deterministic search mode
const TargetPhrase *target_phrase = m_deterministic ? &(hypothesis->GetCurrTargetPhrase()) : NULL;
HypothesisQueueItem *item = new HypothesisQueueItem(hypothesis_pos
, translation_pos
, hypothesis
, edge
, target_phrase);
IFVERBOSE(2) {
item->GetHypothesis()->GetManager().GetSentenceStats().StartTimeManageCubes();
}
m_queue.push(item);
IFVERBOSE(2) {
item->GetHypothesis()->GetManager().GetSentenceStats().StopTimeManageCubes();
}
}
HypothesisQueueItem*
BitmapContainer::Dequeue(bool keepValue)
{
if (!m_queue.empty()) {
HypothesisQueueItem *item = m_queue.top();
if (!keepValue) {
m_queue.pop();
}
return item;
}
return NULL;
}
HypothesisQueueItem*
BitmapContainer::Top() const
{
return m_queue.top();
}
size_t
BitmapContainer::Size()
{
return m_queue.size();
}
bool
BitmapContainer::Empty() const
{
return m_queue.empty();
}
const HypothesisSet&
BitmapContainer::GetHypotheses() const
{
return m_hypotheses;
}
size_t
BitmapContainer::GetHypothesesSize() const
{
return m_hypotheses.size();
}
const BackwardsEdgeSet&
BitmapContainer::GetBackwardsEdges()
{
return m_edges;
}
void
BitmapContainer::AddHypothesis(Hypothesis *hypothesis)
{
bool itemExists = false;
HypothesisSet::const_iterator iter = m_hypotheses.begin();
HypothesisSet::const_iterator iterEnd = m_hypotheses.end();
// cfedermann: do we actually need this check?
while (iter != iterEnd) {
if (*iter == hypothesis) {
itemExists = true;
break;
}
++iter;
}
UTIL_THROW_IF2(itemExists, "Duplicate hypotheses");
m_hypotheses.push_back(hypothesis);
}
void
BitmapContainer::AddBackwardsEdge(BackwardsEdge *edge)
{
m_edges.insert(edge);
}
void
BitmapContainer::InitializeEdges()
{
BackwardsEdgeSet::iterator iter = m_edges.begin();
BackwardsEdgeSet::iterator iterEnd = m_edges.end();
while (iter != iterEnd) {
BackwardsEdge *edge = *iter;
edge->Initialize();
++iter;
}
}
void
BitmapContainer::EnsureMinStackHyps(const size_t minNumHyps)
{
while ((!Empty()) && m_numStackInsertions < minNumHyps) {
ProcessBestHypothesis();
}
}
void
BitmapContainer::ProcessBestHypothesis()
{
if (m_queue.empty()) {
return;
}
// Get the currently best hypothesis from the queue.
HypothesisQueueItem *item = Dequeue();
// If the priority queue is exhausted, we are done and should have exited
UTIL_THROW_IF2(item == NULL, "Null object");
// check we are pulling things off of priority queue in right order
if (!Empty()) {
HypothesisQueueItem *check = Dequeue(true);
UTIL_THROW_IF2(item->GetHypothesis()->GetFutureScore() < check->GetHypothesis()->GetFutureScore(),
"Non-monotonic total score: "
<< item->GetHypothesis()->GetFutureScore() << " vs. "
<< check->GetHypothesis()->GetFutureScore());
}
// Logging for the criminally insane
IFVERBOSE(3) {
item->GetHypothesis()->PrintHypothesis();
}
// Add best hypothesis to hypothesis stack.
const bool newstackentry = m_stack.AddPrune(item->GetHypothesis());
if (newstackentry)
m_numStackInsertions++;
IFVERBOSE(3) {
TRACE_ERR("new stack entry flag is " << newstackentry << std::endl);
}
// Create new hypotheses for the two successors of the hypothesis just added.
item->GetBackwardsEdge()->PushSuccessors(item->GetHypothesisPos(), item->GetTranslationPos());
// We are done with the queue item, we delete it.
delete item;
}
void
BitmapContainer::SortHypotheses()
{
std::sort(m_hypotheses.begin(), m_hypotheses.end(), HypothesisScoreOrderer(m_deterministic));
}
}
|