File size: 7,524 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
// $Id$
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2010 Hieu Hoang
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <algorithm>
#include "ChartCell.h"
#include "ChartCellCollection.h"
#include "HypergraphOutput.h"
#include "RuleCubeQueue.h"
#include "RuleCube.h"
#include "Range.h"
#include "Util.h"
#include "ChartTranslationOptions.h"
#include "ChartTranslationOptionList.h"
#include "ChartManager.h"
#include "util/exception.hh"
using namespace std;
namespace Moses
{
ChartCellBase::ChartCellBase(size_t startPos, size_t endPos) :
m_coverage(startPos, endPos),
m_targetLabelSet(m_coverage) {}
ChartCellBase::~ChartCellBase() {}
/** Constructor
* \param startPos endPos range of this cell
* \param manager pointer back to the manager
*/
ChartCell::ChartCell(size_t startPos, size_t endPos, ChartManager &manager) :
ChartCellBase(startPos, endPos), m_manager(manager)
{
m_nBestIsEnabled = manager.options()->nbest.enabled;
}
ChartCell::~ChartCell() {}
/** Add the given hypothesis to the cell.
* Returns true if added, false if not. Maybe it already exists in the collection or score falls below threshold etc.
* This function just calls the corresponding AddHypothesis() in ChartHypothesisCollection
* \param hypo Hypothesis to be added
*/
bool ChartCell::AddHypothesis(ChartHypothesis *hypo)
{
const Word &targetLHS = hypo->GetTargetLHS();
MapType::iterator m = m_hypoColl.find(targetLHS);
if (m == m_hypoColl.end()) {
std::pair<Word, ChartHypothesisCollection>
e(targetLHS, ChartHypothesisCollection(*m_manager.options()));
m = m_hypoColl.insert(e).first;
}
return m->second.AddHypothesis(hypo, m_manager);
}
/** Prune each collection in this cell to a particular size */
void ChartCell::PruneToSize()
{
MapType::iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
ChartHypothesisCollection &coll = iter->second;
coll.PruneToSize(m_manager);
}
}
/** Decoding at span level: fill chart cell with hypotheses
* (implementation of cube pruning)
* \param transOptList list of applicable rules to create hypotheses for the cell
* \param allChartCells entire chart - needed to look up underlying hypotheses
*/
void ChartCell::Decode(const ChartTranslationOptionList &transOptList
, const ChartCellCollection &allChartCells)
{
// priority queue for applicable rules with selected hypotheses
RuleCubeQueue queue(m_manager);
// add all trans opt into queue. using only 1st child node.
for (size_t i = 0; i < transOptList.GetSize(); ++i) {
const ChartTranslationOptions &transOpt = transOptList.Get(i);
RuleCube *ruleCube = new RuleCube(transOpt, allChartCells, m_manager);
queue.Add(ruleCube);
}
// pluck things out of queue and add to hypo collection
const size_t popLimit = m_manager.options()->cube.pop_limit;
for (size_t numPops = 0; numPops < popLimit && !queue.IsEmpty(); ++numPops) {
ChartHypothesis *hypo = queue.Pop();
AddHypothesis(hypo);
}
}
//! call SortHypotheses() in each hypo collection in this cell
void ChartCell::SortHypotheses()
{
UTIL_THROW_IF2(!m_targetLabelSet.Empty(), "Already sorted");
MapType::iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
ChartHypothesisCollection &coll = iter->second;
if (coll.GetSize()) {
coll.SortHypotheses();
m_targetLabelSet.AddConstituent(iter->first, &coll.GetSortedHypotheses());
}
}
}
/** Return the highest scoring hypothesis out of all the hypo collection in this cell */
const ChartHypothesis *ChartCell::GetBestHypothesis() const
{
const ChartHypothesis *ret = NULL;
float bestScore = -std::numeric_limits<float>::infinity();
MapType::const_iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
const HypoList &sortedList = iter->second.GetSortedHypotheses();
if (sortedList.size() > 0) {
const ChartHypothesis *hypo = sortedList[0];
if (hypo->GetFutureScore() > bestScore) {
bestScore = hypo->GetFutureScore();
ret = hypo;
}
}
}
return ret;
}
//! call CleanupArcList() in each hypo collection in this cell
void ChartCell::CleanupArcList()
{
// only necessary if n-best calculations are enabled
if (!m_nBestIsEnabled) return;
MapType::iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
ChartHypothesisCollection &coll = iter->second;
coll.CleanupArcList();
}
}
//! debug info - size of each hypo collection in this cell
void ChartCell::OutputSizes(std::ostream &out) const
{
MapType::const_iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
const Word &targetLHS = iter->first;
const ChartHypothesisCollection &coll = iter->second;
out << targetLHS << "=" << coll.GetSize() << " ";
}
}
//! debug info - total number of hypos in all hypo collection in this cell
size_t ChartCell::GetSize() const
{
size_t ret = 0;
MapType::const_iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
const ChartHypothesisCollection &coll = iter->second;
ret += coll.GetSize();
}
return ret;
}
const HypoList *ChartCell::GetAllSortedHypotheses() const
{
HypoList *ret = new HypoList();
MapType::const_iterator iter;
for (iter = m_hypoColl.begin(); iter != m_hypoColl.end(); ++iter) {
const ChartHypothesisCollection &coll = iter->second;
const HypoList &list = coll.GetSortedHypotheses();
std::copy(list.begin(), list.end(), std::inserter(*ret, ret->end()));
}
return ret;
}
//! call WriteSearchGraph() for each hypo collection
void ChartCell::WriteSearchGraph(const ChartSearchGraphWriter& writer, const std::map<unsigned, bool> &reachable) const
{
MapType::const_iterator iterOutside;
for (iterOutside = m_hypoColl.begin(); iterOutside != m_hypoColl.end(); ++iterOutside) {
const ChartHypothesisCollection &coll = iterOutside->second;
coll.WriteSearchGraph(writer, reachable);
}
}
std::ostream& operator<<(std::ostream &out, const ChartCell &cell)
{
ChartCell::MapType::const_iterator iterOutside;
for (iterOutside = cell.m_hypoColl.begin(); iterOutside != cell.m_hypoColl.end(); ++iterOutside) {
const Word &targetLHS = iterOutside->first;
cerr << targetLHS << ":" << endl;
const ChartHypothesisCollection &coll = iterOutside->second;
cerr << coll;
}
/*
ChartCell::HCType::const_iterator iter;
for (iter = cell.m_hypos.begin(); iter != cell.m_hypos.end(); ++iter)
{
const ChartHypothesis &hypo = **iter;
out << hypo << endl;
}
*/
return out;
}
} // namespace
|