File size: 29,088 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
// $Id$
// vim:tabstop=2
/***********************************************************************
 Moses - factored phrase-based language decoder
 Copyright (C) 2010 Hieu Hoang

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 ***********************************************************************/

#include <cstdio>
#include "ChartManager.h"
#include "ChartCell.h"
#include "ChartHypothesis.h"
#include "ChartKBestExtractor.h"
#include "ChartTranslationOptions.h"
#include "HypergraphOutput.h"
#include "StaticData.h"
#include "DecodeStep.h"
#include "TreeInput.h"
#include "moses/FF/StatefulFeatureFunction.h"
#include "moses/FF/WordPenaltyProducer.h"
#include "moses/OutputCollector.h"
#include "moses/ChartKBestExtractor.h"
#include "moses/HypergraphOutput.h"
#include "moses/TranslationTask.h"

using namespace std;

namespace Moses
{

/* constructor. Initialize everything prior to decoding a particular sentence.
 * \param source the sentence to be decoded
 * \param system which particular set of models to use.
 */
ChartManager::ChartManager(ttasksptr const& ttask)
  : BaseManager(ttask)
  , m_hypoStackColl(m_source, *this)
  , m_start(clock())
  , m_hypothesisId(0)
  , m_parser(ttask, m_hypoStackColl)
  , m_translationOptionList(ttask->options()->syntax.rule_limit, m_source)
{ }

ChartManager::~ChartManager()
{
  clock_t end = clock();
  float et = (end - m_start);
  et /= (float)CLOCKS_PER_SEC;
  VERBOSE(1, "Translation took " << et << " seconds" << endl);

}

//! decode the sentence. This contains the main laps. Basically, the CKY++ algorithm
void ChartManager::Decode()
{

  VERBOSE(1,"Translating: " << m_source << endl);

  ResetSentenceStats(m_source);

  VERBOSE(2,"Decoding: " << endl);
  //ChartHypothesis::ResetHypoCount();

  AddXmlChartOptions();

  // MAIN LOOP
  size_t size = m_source.GetSize();
  for (int startPos = size-1; startPos >= 0; --startPos) {
    for (size_t width = 1; width <= size-startPos; ++width) {
      size_t endPos = startPos + width - 1;
      Range range(startPos, endPos);

      // create trans opt
      m_translationOptionList.Clear();
      m_parser.Create(range, m_translationOptionList);
      m_translationOptionList.ApplyThreshold(options()->search.trans_opt_threshold);

      const InputPath &inputPath = m_parser.GetInputPath(range);
      m_translationOptionList.EvaluateWithSourceContext(m_source, inputPath);

      // decode
      ChartCell &cell = m_hypoStackColl.Get(range);
      cell.Decode(m_translationOptionList, m_hypoStackColl);

      m_translationOptionList.Clear();
      cell.PruneToSize();
      cell.CleanupArcList();
      cell.SortHypotheses();
    }
  }

  IFVERBOSE(1) {

    for (size_t startPos = 0; startPos < size; ++startPos) {
      cerr.width(3);
      cerr << startPos << " ";
    }
    cerr << endl;
    for (size_t width = 1; width <= size; width++) {
      for( size_t space = 0; space < width-1; space++ ) {
        cerr << "  ";
      }
      for (size_t startPos = 0; startPos <= size-width; ++startPos) {
        Range range(startPos, startPos+width-1);
        cerr.width(3);
        cerr << m_hypoStackColl.Get(range).GetSize() << " ";
      }
      cerr << endl;
    }
  }
}

/** add specific translation options and hypotheses according to the XML override translation scheme.
 *  Doesn't seem to do anything about walls and zones.
 *  @todo check walls & zones. Check that the implementation doesn't leak, xml options sometimes does if you're not careful
 */
void ChartManager::AddXmlChartOptions()
{
  const std::vector <ChartTranslationOptions*> xmlChartOptionsList
  = m_source.GetXmlChartTranslationOptions();
  IFVERBOSE(2) {
    cerr << "AddXmlChartOptions " << xmlChartOptionsList.size() << endl;
  }
  if (xmlChartOptionsList.size() == 0) return;

  typedef std::vector<ChartTranslationOptions*>::const_iterator citer;
  for(citer i = xmlChartOptionsList.begin(); i != xmlChartOptionsList.end(); ++i) {
    ChartTranslationOptions* opt = *i;

    const Range &range = opt->GetSourceWordsRange();

    RuleCubeItem* item = new RuleCubeItem( *opt, m_hypoStackColl );
    ChartHypothesis* hypo = new ChartHypothesis(*opt, *item, *this);
    hypo->EvaluateWhenApplied();


    ChartCell &cell = m_hypoStackColl.Get(range);
    cell.AddHypothesis(hypo);
  }
}

//! get best complete translation from the top chart cell.
const ChartHypothesis *ChartManager::GetBestHypothesis() const
{
  size_t size = m_source.GetSize();

  if (size == 0) // empty source
    return NULL;
  else {
    Range range(0, size-1);
    const ChartCell &lastCell = m_hypoStackColl.Get(range);
    return lastCell.GetBestHypothesis();
  }
}

/** Calculate the n-best paths through the output hypergraph.
 * Return the list of paths with the variable ret
 * \param n how may paths to return
 * \param ret return argument
 * \param onlyDistinct whether to check for distinct output sentence or not (default - don't check, just return top n-paths)
 */
void ChartManager::CalcNBest(
  std::size_t n,
  std::vector<boost::shared_ptr<ChartKBestExtractor::Derivation> > &nBestList,
  bool onlyDistinct) const
{
  nBestList.clear();
  if (n == 0 || m_source.GetSize() == 0) {
    return;
  }

  // Get the list of top-level hypotheses, sorted by score.
  Range range(0, m_source.GetSize()-1);
  const ChartCell &lastCell = m_hypoStackColl.Get(range);
  boost::scoped_ptr<const std::vector<const ChartHypothesis*> > topLevelHypos(
    lastCell.GetAllSortedHypotheses());
  if (!topLevelHypos) {
    return;
  }

  ChartKBestExtractor extractor;

  if (!onlyDistinct) {
    // Return the n-best list as is, including duplicate translations.
    extractor.Extract(*topLevelHypos, n, nBestList);
    return;
  }

  // Determine how many derivations to extract.  If the n-best list is
  // restricted to distinct translations then this limit should be bigger
  // than n.  The n-best factor determines how much bigger the limit should be,
  // with 0 being 'unlimited.'  This actually sets a large-ish limit in case
  // too many translations are identical.
  const std::size_t nBestFactor = options()->nbest.factor;
  std::size_t numDerivations = (nBestFactor == 0) ? n*1000 : n*nBestFactor;

  // Extract the derivations.
  ChartKBestExtractor::KBestVec bigList;
  bigList.reserve(numDerivations);
  extractor.Extract(*topLevelHypos, numDerivations, bigList);

  // Copy derivations into nBestList, skipping ones with repeated translations.
  std::set<Phrase> distinct;
  for (ChartKBestExtractor::KBestVec::const_iterator p = bigList.begin();
       nBestList.size() < n && p != bigList.end(); ++p) {
    boost::shared_ptr<ChartKBestExtractor::Derivation> derivation = *p;
    Phrase translation = ChartKBestExtractor::GetOutputPhrase(*derivation);
    if (distinct.insert(translation).second) {
      nBestList.push_back(derivation);
    }
  }
}

void ChartManager::WriteSearchGraph(const ChartSearchGraphWriter& writer) const
{

  size_t size = m_source.GetSize();

  // which hypotheses are reachable?
  std::map<unsigned,bool> reachable;
  Range fullRange(0, size-1);
  const ChartCell &lastCell = m_hypoStackColl.Get(fullRange);
  const ChartHypothesis *hypo = lastCell.GetBestHypothesis();

  if (hypo == NULL) {
    // no hypothesis
    return;
  }
  size_t winners = 0;
  size_t losers = 0;

  FindReachableHypotheses( hypo, reachable, &winners, &losers);
  writer.WriteHeader(winners, losers);

  for (size_t width = 1; width <= size; ++width) {
    for (size_t startPos = 0; startPos <= size-width; ++startPos) {
      size_t endPos = startPos + width - 1;
      Range range(startPos, endPos);
      TRACE_ERR(" " << range << "=");

      const ChartCell &cell = m_hypoStackColl.Get(range);
      cell.WriteSearchGraph(writer, reachable);
    }
  }
}

void ChartManager::FindReachableHypotheses(
  const ChartHypothesis *hypo, std::map<unsigned,bool> &reachable, size_t* winners, size_t* losers) const
{
  // do not recurse, if already visited
  if (reachable.find(hypo->GetId()) != reachable.end()) {
    return;
  }

  // recurse
  reachable[ hypo->GetId() ] = true;
  if (hypo->GetWinningHypothesis() == hypo) {
    (*winners)++;
  } else {
    (*losers)++;
  }
  const std::vector<const ChartHypothesis*> &previous = hypo->GetPrevHypos();
  for(std::vector<const ChartHypothesis*>::const_iterator i = previous.begin(); i != previous.end(); ++i) {
    FindReachableHypotheses( *i, reachable, winners, losers );
  }

  // also loop over recombined hypotheses (arcs)
  const ChartArcList *arcList = hypo->GetArcList();
  if (arcList) {
    ChartArcList::const_iterator iterArc;
    for (iterArc = arcList->begin(); iterArc != arcList->end(); ++iterArc) {
      const ChartHypothesis &arc = **iterArc;
      FindReachableHypotheses( &arc, reachable, winners, losers );
    }
  }
}

void
ChartManager::
OutputSearchGraphAsHypergraph(std::ostream& out) const
{
  ChartSearchGraphWriterHypergraph writer(options(), &out);
  WriteSearchGraph(writer);
}

void ChartManager::OutputSearchGraphMoses(std::ostream &outputSearchGraphStream) const
{
  ChartSearchGraphWriterMoses writer(options(), &outputSearchGraphStream,
                                     m_source.GetTranslationId());
  WriteSearchGraph(writer);
}

void ChartManager::OutputBest(OutputCollector *collector) const
{
  const ChartHypothesis *bestHypo = GetBestHypothesis();
  if (collector && bestHypo) {
    const size_t translationId = m_source.GetTranslationId();
    const ChartHypothesis *bestHypo = GetBestHypothesis();
    OutputBestHypo(collector, bestHypo, translationId);
  }
}

void ChartManager::OutputNBest(OutputCollector *collector) const
{
  size_t nBestSize = options()->nbest.nbest_size;
  if (nBestSize > 0) {
    const size_t translationId = m_source.GetTranslationId();

    VERBOSE(2,"WRITING " << nBestSize << " TRANSLATION ALTERNATIVES TO "
            << options()->nbest.output_file_path << endl);
    std::vector<boost::shared_ptr<ChartKBestExtractor::Derivation> > nBestList;
    CalcNBest(nBestSize, nBestList, options()->nbest.only_distinct);
    OutputNBestList(collector, nBestList, translationId);
    IFVERBOSE(2) {
      PrintUserTime("N-Best Hypotheses Generation Time:");
    }
  }

}

void ChartManager::OutputNBestList(OutputCollector *collector,
                                   const ChartKBestExtractor::KBestVec &nBestList,
                                   long translationId) const
{
  std::ostringstream out;

  if (collector->OutputIsCout()) {
    // Set precision only if we're writing the n-best list to cout.  This is to
    // preserve existing behaviour, but should probably be done either way.
    FixPrecision(out);
  }

  NBestOptions const& nbo = options()->nbest;
  bool includeWordAlignment = nbo.include_alignment_info;
  bool PrintNBestTrees = nbo.print_trees;

  for (ChartKBestExtractor::KBestVec::const_iterator p = nBestList.begin();
       p != nBestList.end(); ++p) {
    const ChartKBestExtractor::Derivation &derivation = **p;

    // get the derivation's target-side yield
    Phrase outputPhrase = ChartKBestExtractor::GetOutputPhrase(derivation);

    // delete <s> and </s>
    UTIL_THROW_IF2(outputPhrase.GetSize() < 2,
                   "Output phrase should have contained at least 2 words (beginning and end-of-sentence)");
    outputPhrase.RemoveWord(0);
    outputPhrase.RemoveWord(outputPhrase.GetSize() - 1);

    // print the translation ID, surface factors, and scores
    out << translationId << " ||| ";
    OutputSurface(out, outputPhrase); // , outputFactorOrder, false);
    out << " ||| ";
    boost::shared_ptr<ScoreComponentCollection> scoreBreakdown = ChartKBestExtractor::GetOutputScoreBreakdown(derivation);
    bool with_labels = options()->nbest.include_feature_labels;
    scoreBreakdown->OutputAllFeatureScores(out, with_labels);
    out << " ||| " << derivation.score;

    // optionally, print word alignments
    if (includeWordAlignment) {
      out << " ||| ";
      Alignments align;
      OutputAlignmentNBest(align, derivation, 0);
      for (Alignments::const_iterator q = align.begin(); q != align.end();
           ++q) {
        out << q->first << "-" << q->second << " ";
      }
    }

    // optionally, print tree
    if (PrintNBestTrees) {
      TreePointer tree = ChartKBestExtractor::GetOutputTree(derivation);
      out << " ||| " << tree->GetString();
    }

    out << std::endl;
  }

  assert(collector);
  collector->Write(translationId, out.str());
}

size_t ChartManager::CalcSourceSize(const Moses::ChartHypothesis *hypo) const
{
  size_t ret = hypo->GetCurrSourceRange().GetNumWordsCovered();
  const std::vector<const ChartHypothesis*> &prevHypos = hypo->GetPrevHypos();
  for (size_t i = 0; i < prevHypos.size(); ++i) {
    size_t childSize = prevHypos[i]->GetCurrSourceRange().GetNumWordsCovered();
    ret -= (childSize - 1);
  }
  return ret;
}

size_t ChartManager::OutputAlignmentNBest(
  Alignments &retAlign,
  const Moses::ChartKBestExtractor::Derivation &derivation,
  size_t startTarget) const
{
  const ChartHypothesis &hypo = derivation.edge.head->hypothesis;

  size_t totalTargetSize = 0;
  size_t startSource = hypo.GetCurrSourceRange().GetStartPos();

  const TargetPhrase &tp = hypo.GetCurrTargetPhrase();

  size_t thisSourceSize = CalcSourceSize(&hypo);

  // position of each terminal word in translation rule, irrespective of alignment
  // if non-term, number is undefined
  vector<size_t> sourceOffsets(thisSourceSize, 0);
  vector<size_t> targetOffsets(tp.GetSize(), 0);

  const AlignmentInfo &aiNonTerm = hypo.GetCurrTargetPhrase().GetAlignNonTerm();
  vector<size_t> sourceInd2pos = aiNonTerm.GetSourceIndex2PosMap();
  const AlignmentInfo::NonTermIndexMap &targetPos2SourceInd = aiNonTerm.GetNonTermIndexMap();

  UTIL_THROW_IF2(sourceInd2pos.size() != derivation.subderivations.size(),
                 "Error");

  size_t targetInd = 0;
  for (size_t targetPos = 0; targetPos < tp.GetSize(); ++targetPos) {
    if (tp.GetWord(targetPos).IsNonTerminal()) {
      UTIL_THROW_IF2(targetPos >= targetPos2SourceInd.size(), "Error");
      size_t sourceInd = targetPos2SourceInd[targetPos];
      size_t sourcePos = sourceInd2pos[sourceInd];

      const Moses::ChartKBestExtractor::Derivation &subderivation =
        *derivation.subderivations[sourceInd];

      // calc source size
      size_t sourceSize = subderivation.edge.head->hypothesis.GetCurrSourceRange().GetNumWordsCovered();
      sourceOffsets[sourcePos] = sourceSize;

      // calc target size.
      // Recursively look thru child hypos
      size_t currStartTarget = startTarget + totalTargetSize;
      size_t targetSize = OutputAlignmentNBest(retAlign, subderivation,
                          currStartTarget);
      targetOffsets[targetPos] = targetSize;

      totalTargetSize += targetSize;
      ++targetInd;
    } else {
      ++totalTargetSize;
    }
  }

  // convert position within translation rule to absolute position within
  // source sentence / output sentence
  ShiftOffsets(sourceOffsets, startSource);
  ShiftOffsets(targetOffsets, startTarget);

  // get alignments from this hypo
  const AlignmentInfo &aiTerm = hypo.GetCurrTargetPhrase().GetAlignTerm();

  // add to output arg, offsetting by source & target
  AlignmentInfo::const_iterator iter;
  for (iter = aiTerm.begin(); iter != aiTerm.end(); ++iter) {
    const std::pair<size_t,size_t> &align = *iter;
    size_t relSource = align.first;
    size_t relTarget = align.second;
    size_t absSource = sourceOffsets[relSource];
    size_t absTarget = targetOffsets[relTarget];

    pair<size_t, size_t> alignPoint(absSource, absTarget);
    pair<Alignments::iterator, bool> ret = retAlign.insert(alignPoint);
    UTIL_THROW_IF2(!ret.second, "Error");
  }

  return totalTargetSize;
}

void ChartManager::OutputAlignment(OutputCollector *collector) const
{
  if (collector == NULL) {
    return;
  }

  ostringstream out;

  const ChartHypothesis *hypo = GetBestHypothesis();
  if (hypo) {
    Alignments retAlign;
    OutputAlignment(retAlign, hypo, 0);

    // output alignments
    Alignments::const_iterator iter;
    for (iter = retAlign.begin(); iter != retAlign.end(); ++iter) {
      const pair<size_t, size_t> &alignPoint = *iter;
      out << alignPoint.first << "-" << alignPoint.second << " ";
    }
  }
  out << endl;

  collector->Write(m_source.GetTranslationId(), out.str());

}

size_t ChartManager::OutputAlignment(Alignments &retAlign,
                                     const Moses::ChartHypothesis *hypo,
                                     size_t startTarget) const
{
  size_t totalTargetSize = 0;
  size_t startSource = hypo->GetCurrSourceRange().GetStartPos();

  const TargetPhrase &tp = hypo->GetCurrTargetPhrase();

  size_t thisSourceSize = CalcSourceSize(hypo);

  // position of each terminal word in translation rule, irrespective of alignment
  // if non-term, number is undefined
  vector<size_t> sourceOffsets(thisSourceSize, 0);
  vector<size_t> targetOffsets(tp.GetSize(), 0);

  const vector<const ChartHypothesis*> &prevHypos = hypo->GetPrevHypos();

  const AlignmentInfo &aiNonTerm = hypo->GetCurrTargetPhrase().GetAlignNonTerm();
  vector<size_t> sourceInd2pos = aiNonTerm.GetSourceIndex2PosMap();
  const AlignmentInfo::NonTermIndexMap &targetPos2SourceInd = aiNonTerm.GetNonTermIndexMap();

  UTIL_THROW_IF2(sourceInd2pos.size() != prevHypos.size(), "Error");

  size_t targetInd = 0;
  for (size_t targetPos = 0; targetPos < tp.GetSize(); ++targetPos) {
    if (tp.GetWord(targetPos).IsNonTerminal()) {
      UTIL_THROW_IF2(targetPos >= targetPos2SourceInd.size(), "Error");
      size_t sourceInd = targetPos2SourceInd[targetPos];
      size_t sourcePos = sourceInd2pos[sourceInd];

      const ChartHypothesis *prevHypo = prevHypos[sourceInd];

      // calc source size
      size_t sourceSize = prevHypo->GetCurrSourceRange().GetNumWordsCovered();
      sourceOffsets[sourcePos] = sourceSize;

      // calc target size.
      // Recursively look thru child hypos
      size_t currStartTarget = startTarget + totalTargetSize;
      size_t targetSize = OutputAlignment(retAlign, prevHypo, currStartTarget);
      targetOffsets[targetPos] = targetSize;

      totalTargetSize += targetSize;
      ++targetInd;
    } else {
      ++totalTargetSize;
    }
  }

  // convert position within translation rule to absolute position within
  // source sentence / output sentence
  ShiftOffsets(sourceOffsets, startSource);
  ShiftOffsets(targetOffsets, startTarget);

  // get alignments from this hypo
  const AlignmentInfo &aiTerm = hypo->GetCurrTargetPhrase().GetAlignTerm();

  // add to output arg, offsetting by source & target
  AlignmentInfo::const_iterator iter;
  for (iter = aiTerm.begin(); iter != aiTerm.end(); ++iter) {
    const std::pair<size_t,size_t> &align = *iter;
    size_t relSource = align.first;
    size_t relTarget = align.second;
    size_t absSource = sourceOffsets[relSource];
    size_t absTarget = targetOffsets[relTarget];

    pair<size_t, size_t> alignPoint(absSource, absTarget);
    pair<Alignments::iterator, bool> ret = retAlign.insert(alignPoint);
    UTIL_THROW_IF2(!ret.second, "Error");

  }

  return totalTargetSize;
}

void ChartManager::OutputDetailedTranslationReport(OutputCollector *collector) const
{
  if (collector) {
    OutputDetailedTranslationReport(collector,
                                    GetBestHypothesis(),
                                    static_cast<const Sentence&>(m_source),
                                    m_source.GetTranslationId());
  }
}

void ChartManager::OutputDetailedTranslationReport(
  OutputCollector *collector,
  const ChartHypothesis *hypo,
  const Sentence &sentence,
  long translationId) const
{
  if (hypo == NULL) {
    return;
  }
  std::ostringstream out;
  ApplicationContext applicationContext;

  OutputTranslationOptions(out, applicationContext, hypo, sentence, translationId);
  collector->Write(translationId, out.str());

  //DIMw
  if (options()->output.detailed_all_transrep_filepath.size()) {
    const Sentence &sentence = static_cast<const Sentence &>(m_source);
    size_t nBestSize = options()->nbest.nbest_size;
    std::vector<boost::shared_ptr<ChartKBestExtractor::Derivation> > nBestList;
    CalcNBest(nBestSize, nBestList, options()->nbest.only_distinct);
    OutputDetailedAllTranslationReport(collector, nBestList, sentence, translationId);
  }

}

void ChartManager::OutputTranslationOptions(std::ostream &out,
    ApplicationContext &applicationContext,
    const ChartHypothesis *hypo,
    const Sentence &sentence,
    long translationId) const
{
  if (hypo != NULL) {
    OutputTranslationOption(out, applicationContext, hypo, sentence, translationId);
    out << std::endl;
  }

  // recursive
  const std::vector<const ChartHypothesis*> &prevHypos = hypo->GetPrevHypos();
  std::vector<const ChartHypothesis*>::const_iterator iter;
  for (iter = prevHypos.begin(); iter != prevHypos.end(); ++iter) {
    const ChartHypothesis *prevHypo = *iter;
    OutputTranslationOptions(out, applicationContext, prevHypo, sentence, translationId);
  }
}

void ChartManager::OutputTranslationOption(std::ostream &out,
    ApplicationContext &applicationContext,
    const ChartHypothesis *hypo,
    const Sentence &sentence,
    long translationId) const
{
  ReconstructApplicationContext(*hypo, sentence, applicationContext);
  out << "Trans Opt " << translationId
      << " " << hypo->GetCurrSourceRange()
      << ": ";
  WriteApplicationContext(out, applicationContext);
  out << ": " << hypo->GetCurrTargetPhrase().GetTargetLHS()
      << "->" << hypo->GetCurrTargetPhrase()
      << " " << hypo->GetFutureScore() << hypo->GetScoreBreakdown();
}

// Given a hypothesis and sentence, reconstructs the 'application context' --
// the source RHS symbols of the SCFG rule that was applied, plus their spans.
void ChartManager::ReconstructApplicationContext(const ChartHypothesis &hypo,
    const Sentence &sentence,
    ApplicationContext &context) const
{
  context.clear();
  const std::vector<const ChartHypothesis*> &prevHypos = hypo.GetPrevHypos();
  std::vector<const ChartHypothesis*>::const_iterator p = prevHypos.begin();
  std::vector<const ChartHypothesis*>::const_iterator end = prevHypos.end();
  const Range &span = hypo.GetCurrSourceRange();
  size_t i = span.GetStartPos();
  while (i <= span.GetEndPos()) {
    if (p == end || i < (*p)->GetCurrSourceRange().GetStartPos()) {
      // Symbol is a terminal.
      const Word &symbol = sentence.GetWord(i);
      context.push_back(std::make_pair(symbol, Range(i, i)));
      ++i;
    } else {
      // Symbol is a non-terminal.
      const Word &symbol = (*p)->GetTargetLHS();
      const Range &range = (*p)->GetCurrSourceRange();
      context.push_back(std::make_pair(symbol, range));
      i = range.GetEndPos()+1;
      ++p;
    }
  }
}

void ChartManager::OutputUnknowns(OutputCollector *collector) const
{
  if (collector) {
    long translationId = m_source.GetTranslationId();
    const std::vector<Phrase*> &oovs = GetParser().GetUnknownSources();

    std::ostringstream out;
    for (std::vector<Phrase*>::const_iterator p = oovs.begin();
         p != oovs.end(); ++p) {
      out << **p;
    }
    out << std::endl;
    collector->Write(translationId, out.str());
  }

}

void ChartManager::OutputDetailedTreeFragmentsTranslationReport(OutputCollector *collector) const
{
  const ChartHypothesis *hypo = GetBestHypothesis();
  if (collector == NULL || hypo == NULL) {
    return;
  }

  std::ostringstream out;
  ApplicationContext applicationContext;

  const Sentence &sentence = static_cast<const Sentence &>(m_source);
  const size_t translationId = m_source.GetTranslationId();

  OutputTreeFragmentsTranslationOptions(out, applicationContext, hypo, sentence, translationId);

  //Tree of full sentence
  const StatefulFeatureFunction* treeStructure;
  treeStructure = StaticData::Instance().GetTreeStructure();
  if (treeStructure != NULL) {
    const vector<const StatefulFeatureFunction*>& sff = StatefulFeatureFunction::GetStatefulFeatureFunctions();
    for( size_t i=0; i<sff.size(); i++ ) {
      if (sff[i] == treeStructure) {
        const TreeState* tree = static_cast<const TreeState*>(hypo->GetFFState(i));
        out << "Full Tree " << translationId << ": " << tree->GetTree()->GetString() << "\n";
        break;
      }
    }
  }

  collector->Write(translationId, out.str());

}

void ChartManager::OutputTreeFragmentsTranslationOptions(std::ostream &out,
    ApplicationContext &applicationContext,
    const ChartHypothesis *hypo,
    const Sentence &sentence,
    long translationId) const
{

  if (hypo != NULL) {
    OutputTranslationOption(out, applicationContext, hypo, sentence, translationId);

    const TargetPhrase &currTarPhr = hypo->GetCurrTargetPhrase();

    out << " ||| ";
    if (const PhraseProperty *property = currTarPhr.GetProperty("Tree")) {
      out << " " << *property->GetValueString();
    } else {
      out << " " << "noTreeInfo";
    }
    out << std::endl;
  }

  // recursive
  const std::vector<const ChartHypothesis*> &prevHypos = hypo->GetPrevHypos();
  std::vector<const ChartHypothesis*>::const_iterator iter;
  for (iter = prevHypos.begin(); iter != prevHypos.end(); ++iter) {
    const ChartHypothesis *prevHypo = *iter;
    OutputTreeFragmentsTranslationOptions(out, applicationContext, prevHypo, sentence, translationId);
  }
}

void ChartManager::OutputSearchGraph(OutputCollector *collector) const
{
  if (collector) {
    long translationId = m_source.GetTranslationId();
    std::ostringstream out;
    OutputSearchGraphMoses( out);
    collector->Write(translationId, out.str());
  }
}

//DIMw
void ChartManager::OutputDetailedAllTranslationReport(
  OutputCollector *collector,
  const std::vector<boost::shared_ptr<Moses::ChartKBestExtractor::Derivation> > &nBestList,
  const Sentence &sentence,
  long translationId) const
{
  std::ostringstream out;
  ApplicationContext applicationContext;

  const ChartCellCollection& cells = GetChartCellCollection();
  size_t size = GetSource().GetSize();
  for (size_t width = 1; width <= size; ++width) {
    for (size_t startPos = 0; startPos <= size-width; ++startPos) {
      size_t endPos = startPos + width - 1;
      Range range(startPos, endPos);
      const ChartCell& cell = cells.Get(range);
      const HypoList* hyps = cell.GetAllSortedHypotheses();
      out << "Chart Cell [" << startPos << ".." << endPos << "]" << endl;
      HypoList::const_iterator iter;
      size_t c = 1;
      for (iter = hyps->begin(); iter != hyps->end(); ++iter) {
        out << "----------------Item " << c++ << " ---------------------"
            << endl;
        OutputTranslationOptions(out, applicationContext, *iter,
                                 sentence, translationId);
      }
    }
  }
  collector->Write(translationId, out.str());
}

void ChartManager::OutputBestHypo(OutputCollector *collector, const ChartHypothesis *hypo, long translationId) const
{
  if (!collector)
    return;
  std::ostringstream out;
  FixPrecision(out);
  if (hypo != NULL) {
    VERBOSE(1,"BEST TRANSLATION: " << *hypo << endl);
    VERBOSE(3,"Best path: ");
    Backtrack(hypo);
    VERBOSE(3,"0" << std::endl);

    if (options()->output.ReportHypoScore) {
      out << hypo->GetFutureScore() << " ";
    }

    if (options()->output.RecoverPath) {
      out << "||| ";
    }
    Phrase outPhrase(ARRAY_SIZE_INCR);
    hypo->GetOutputPhrase(outPhrase);

    // delete 1st & last
    UTIL_THROW_IF2(outPhrase.GetSize() < 2,
                   "Output phrase should have contained at least 2 words (beginning and end-of-sentence)");

    outPhrase.RemoveWord(0);
    outPhrase.RemoveWord(outPhrase.GetSize() - 1);

    string output = outPhrase.GetStringRep(options()->output.factor_order);
    out << output << endl;
  } else {
    VERBOSE(1, "NO BEST TRANSLATION" << endl);

    if (options()->output.ReportHypoScore) {
      out << "0 ";
    }

    out << endl;
  }
  collector->Write(translationId, out.str());
}

void ChartManager::Backtrack(const ChartHypothesis *hypo) const
{
  const vector<const ChartHypothesis*> &prevHypos = hypo->GetPrevHypos();

  vector<const ChartHypothesis*>::const_iterator iter;
  for (iter = prevHypos.begin(); iter != prevHypos.end(); ++iter) {
    const ChartHypothesis *prevHypo = *iter;

    VERBOSE(3,prevHypo->GetId() << " <= ");
    Backtrack(prevHypo);
  }
}

} // namespace Moses