File size: 7,488 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
// -*- mode: c++; indent-tabs-mode: nil; tab-width: 2 -*-
// $Id$
#include "ConfusionNet.h"
#include <sstream>
#include "FactorCollection.h"
#include "Util.h"
#include "TranslationOptionCollectionConfusionNet.h"
#include "StaticData.h"
#include "Sentence.h"
#include "moses/FF/InputFeature.h"
#include "util/exception.hh"
#include "moses/TranslationTask.h"
namespace Moses
{
struct CNStats {
size_t created,destr,read,colls,words;
CNStats() : created(0),destr(0),read(0),colls(0),words(0) {}
~CNStats() {
print(std::cerr);
}
void createOne() {
++created;
}
void destroyOne() {
++destr;
}
void collect(const ConfusionNet& cn) {
++read;
colls+=cn.GetSize();
for(size_t i=0; i<cn.GetSize(); ++i)
words+=cn[i].size();
}
void print(std::ostream& out) const {
if(created>0) {
out<<"confusion net statistics:\n"
" created:\t"<<created<<"\n"
" destroyed:\t"<<destr<<"\n"
" succ. read:\t"<<read<<"\n"
" columns:\t"<<colls<<"\n"
" words:\t"<<words<<"\n"
" avg. word/column:\t"<<words/(1.0*colls)<<"\n"
" avg. cols/sent:\t"<<colls/(1.0*read)<<"\n"
"\n\n";
}
}
};
CNStats stats;
size_t
ConfusionNet::
GetColumnIncrement(size_t i, size_t j) const
{
(void) i;
(void) j;
return 1;
}
ConfusionNet::
ConfusionNet(AllOptions::ptr const& opts) : InputType(opts)
{
stats.createOne();
if (is_syntax(opts->search.algo)) {
m_defaultLabelSet.insert(opts->syntax.input_default_non_terminal);
}
UTIL_THROW_IF2(InputFeature::InstancePtr() == NULL, "Input feature must be specified");
}
ConfusionNet::
~ConfusionNet()
{
stats.destroyOne();
}
ConfusionNet::
ConfusionNet(Sentence const& s) : InputType(s.options())
{
data.resize(s.GetSize());
for(size_t i=0; i<s.GetSize(); ++i) {
ScorePair scorePair;
std::pair<Word, ScorePair > temp = std::make_pair(s.GetWord(i), scorePair);
data[i].push_back(temp);
}
}
bool
ConfusionNet::
ReadF(std::istream& in, int format)
{
VERBOSE(2, "read confusion net with format "<<format<<"\n");
switch(format) {
case 0:
return ReadFormat0(in);
case 1:
return ReadFormat1(in);
default:
std::cerr << "ERROR: unknown format '"<<format
<<"' in ConfusionNet::Read";
}
return false;
}
int
ConfusionNet::
Read(std::istream& in)
{
int rv=ReadF(in,0);
if(rv) stats.collect(*this);
return rv;
}
bool
ConfusionNet::
ReadFormat0(std::istream& in)
{
Clear();
const std::vector<FactorType>& factorOrder = m_options->input.factor_order;
const InputFeature *inputFeature = InputFeature::InstancePtr();
size_t numInputScores = inputFeature->GetNumInputScores();
size_t numRealWordCount = inputFeature->GetNumRealWordsInInput();
size_t totalCount = numInputScores + numRealWordCount;
bool addRealWordCount = (numRealWordCount > 0);
std::string line;
while(getline(in,line)) {
std::istringstream is(line);
std::string word;
Column col;
while(is>>word) {
Word w;
w.CreateFromString(Input,factorOrder,StringPiece(word),false,false);
std::vector<float> probs(totalCount, 0.0);
for(size_t i=0; i < numInputScores; i++) {
double prob;
if (!(is>>prob)) {
TRACE_ERR("ERROR: unable to parse CN input - bad link probability, "
<< "or wrong number of scores\n");
return false;
}
if(prob<0.0) {
VERBOSE(1, "WARN: negative prob: "<<prob<<" ->set to 0.0\n");
prob=0.0;
} else if (prob>1.0) {
VERBOSE(1, "WARN: prob > 1.0 : "<<prob<<" -> set to 1.0\n");
prob=1.0;
}
probs[i] = (std::max(static_cast<float>(log(prob)),LOWEST_SCORE));
}
// store 'real' word count in last feature if we have one more
// weight than we do arc scores and not epsilon
if (addRealWordCount && word!=EPSILON && word!="")
probs.back() = -1.0;
ScorePair scorePair(probs);
col.push_back(std::make_pair(w,scorePair));
}
if(col.size()) {
data.push_back(col);
ShrinkToFit(data.back());
} else break;
}
return !data.empty();
}
bool
ConfusionNet::
ReadFormat1(std::istream& in)
{
Clear();
const std::vector<FactorType>& factorOrder = m_options->input.factor_order;
std::string line;
if(!getline(in,line)) return 0;
size_t s;
if(getline(in,line)) s=atoi(line.c_str());
else return 0;
data.resize(s);
for(size_t i=0; i<data.size(); ++i) {
if(!getline(in,line)) return 0;
std::istringstream is(line);
if(!(is>>s)) return 0;
std::string word;
double prob;
data[i].resize(s);
for(size_t j=0; j<s; ++j)
if(is>>word>>prob) {
//TODO: we are only reading one prob from this input format, should read many... but this function is unused anyway. -JS
data[i][j].second.denseScores = std::vector<float> (1);
data[i][j].second.denseScores.push_back((float) log(prob));
if(data[i][j].second.denseScores[0]<0) {
VERBOSE(1, "WARN: neg costs: "<<data[i][j].second.denseScores[0]<<" -> set to 0\n");
data[i][j].second.denseScores[0]=0.0;
}
// String2Word(word,data[i][j].first,factorOrder);
Word& w = data[i][j].first;
w.CreateFromString(Input,factorOrder,StringPiece(word),false,false);
} else return 0;
}
return !data.empty();
}
void ConfusionNet::Print(std::ostream& out) const
{
out<<"conf net: "<<data.size()<<"\n";
for(size_t i=0; i<data.size(); ++i) {
out<<i<<" -- ";
for(size_t j=0; j<data[i].size(); ++j) {
out<<"("<<data[i][j].first.ToString()<<", ";
// dense
std::vector<float>::const_iterator iterDense;
for(iterDense = data[i][j].second.denseScores.begin();
iterDense < data[i][j].second.denseScores.end();
++iterDense) {
out<<", "<<*iterDense;
}
// sparse
std::map<StringPiece, float>::const_iterator iterSparse;
for(iterSparse = data[i][j].second.sparseScores.begin();
iterSparse != data[i][j].second.sparseScores.end();
++iterSparse) {
out << ", " << iterSparse->first << "=" << iterSparse->second;
}
out<<") ";
}
out<<"\n";
}
out<<"\n\n";
}
#ifdef _WIN32
#pragma warning(disable:4716)
#endif
Phrase
ConfusionNet::
GetSubString(const Range&) const
{
UTIL_THROW2("ERROR: call to ConfusionNet::GetSubString\n");
//return Phrase(Input);
}
std::string
ConfusionNet::
GetStringRep(const std::vector<FactorType> /* factorsToPrint */) const //not well defined yet
{
TRACE_ERR("ERROR: call to ConfusionNet::GeStringRep\n");
return "";
}
#ifdef _WIN32
#pragma warning(disable:4716)
#endif
const Word& ConfusionNet::GetWord(size_t) const
{
UTIL_THROW2("ERROR: call to ConfusionNet::GetFactorArray\n");
}
#ifdef _WIN32
#pragma warning(default:4716)
#endif
std::ostream& operator<<(std::ostream& out,const ConfusionNet& cn)
{
cn.Print(out);
return out;
}
TranslationOptionCollection*
ConfusionNet::
CreateTranslationOptionCollection(ttasksptr const& ttask) const
{
// size_t maxNoTransOptPerCoverage
// = ttask->options()->search.max_trans_opt_per_cov;
// float translationOptionThreshold
// = ttask->options()->search.trans_opt_threshold;
TranslationOptionCollection *rv
= new TranslationOptionCollectionConfusionNet(ttask, *this);
//, maxNoTransOptPerCoverage, translationOptionThreshold);
assert(rv);
return rv;
}
}
|