File size: 31,884 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
#include "BleuScoreFeature.h"
#include "moses/StaticData.h"
#include "moses/Hypothesis.h"
#include "moses/FactorCollection.h"
#include "util/exception.hh"
using namespace std;
namespace Moses
{
size_t BleuScoreState::bleu_order = 4;
std::vector<BleuScoreFeature*> BleuScoreFeature::s_staticColl;
BleuScoreState::BleuScoreState(bool is_syntax)
: m_words(1),
m_source_length(0),
m_target_length(0),
m_is_syntax(false),
m_scaled_ref_length(0),
m_ngram_counts(bleu_order),
m_ngram_matches(bleu_order)
{ }
size_t BleuScoreState::hash() const
{
if (m_is_syntax)
return 0;
size_t ret = hash_value(m_words);
return ret;
}
bool BleuScoreState::operator==(const FFState& o) const
{
if (&o == this)
return true;
if (m_is_syntax)
return true;
const BleuScoreState& other = static_cast<const BleuScoreState&>(o);
return m_words == other.m_words;
}
std::ostream& operator<<(std::ostream& out, const BleuScoreState& state)
{
state.print(out);
return out;
}
void BleuScoreState::print(std::ostream& out) const
{
out << "ref=" << m_scaled_ref_length
<< ";source=" << m_source_length
<< ";target=" << m_target_length << ";counts=";
for (size_t i = 0; i < bleu_order; ++i) {
out << m_ngram_matches[i] << "/" << m_ngram_counts[i] << ",";
}
out << "ctxt=" << m_words;
}
void BleuScoreState::AddNgramCountAndMatches(std::vector< size_t >& counts,
std::vector< size_t >& matches)
{
for (size_t order = 0; order < BleuScoreState::bleu_order; ++order) {
m_ngram_counts[order] += counts[order];
m_ngram_matches[order] += matches[order];
}
}
BleuScoreFeature::BleuScoreFeature(const std::string &line)
:StatefulFeatureFunction(1, line),
m_enabled(true),
m_sentence_bleu(true),
m_simple_history_bleu(false),
m_count_history(BleuScoreState::bleu_order),
m_match_history(BleuScoreState::bleu_order),
m_source_length_history(0),
m_target_length_history(0),
m_ref_length_history(0),
m_scale_by_input_length(true),
m_scale_by_avg_input_length(false),
m_scale_by_inverse_length(false),
m_scale_by_avg_inverse_length(false),
m_scale_by_x(1),
m_historySmoothing(0.9),
m_smoothing_scheme(PLUS_POINT_ONE)
{
std::cerr << "Initializing BleuScoreFeature." << std::endl;
s_staticColl.push_back(this);
m_tuneable = false;
ReadParameters();
std::cerr << "Finished initializing BleuScoreFeature." << std::endl;
}
void BleuScoreFeature::SetParameter(const std::string& key, const std::string& value)
{
if (key == "references") {
vector<string> referenceFiles = Tokenize(value, ",");
UTIL_THROW_IF2(referenceFiles.size() == 0, "No reference file");
vector<vector<string> > references(referenceFiles.size());
for (size_t i =0; i < referenceFiles.size(); ++i) {
ifstream in(referenceFiles[i].c_str());
if (!in) {
UTIL_THROW2("Unable to load references from " << referenceFiles[i]);
}
string line;
while (getline(in,line)) {
/* if (GetSearchAlgorithm() == CYKPlus) {
stringstream tmp;
tmp << "<s> " << line << " </s>";
line = tmp.str();
}
*/
references[i].push_back(line);
}
if (i > 0) {
if (references[i].size() != references[i-1].size()) {
UTIL_THROW2("Reference files are of different lengths");
}
}
in.close();
} // for (size_t i =0; i < referenceFiles.size(); ++i) {
//Set the references in the bleu feature
LoadReferences(references);
} else {
StatefulFeatureFunction::SetParameter(key, value);
}
}
std::vector<float> BleuScoreFeature::DefaultWeights() const
{
std::vector<float> ret(m_numScoreComponents, 1);
return ret;
}
void BleuScoreFeature::PrintHistory(std::ostream& out) const
{
out << "source length history=" << m_source_length_history << endl;
out << "target length history=" << m_target_length_history << endl;
out << "ref length history=" << m_ref_length_history << endl;
for (size_t i = 0; i < BleuScoreState::bleu_order; ++i) {
out << "match history/count history (" << i << "):" << m_match_history[i] << "/" << m_count_history[i] << endl;
}
}
void BleuScoreFeature::SetBleuParameters(bool disable, bool sentenceBleu, bool scaleByInputLength, bool scaleByAvgInputLength,
bool scaleByInverseLength, bool scaleByAvgInverseLength,
float scaleByX, float historySmoothing, size_t scheme, bool simpleHistoryBleu)
{
m_enabled = !disable;
m_sentence_bleu = sentenceBleu;
m_simple_history_bleu = simpleHistoryBleu;
m_scale_by_input_length = scaleByInputLength;
m_scale_by_avg_input_length = scaleByAvgInputLength;
m_scale_by_inverse_length = scaleByInverseLength;
m_scale_by_avg_inverse_length = scaleByAvgInverseLength;
m_scale_by_x = scaleByX;
m_historySmoothing = historySmoothing;
m_smoothing_scheme = (SmoothingScheme)scheme;
}
// Incoming references (refs) are stored as refs[file_id][[sent_id][reference]]
// This data structure: m_refs[sent_id][[vector<length>][ngrams]]
void BleuScoreFeature::LoadReferences(const std::vector< std::vector< std::string > >& refs)
{
m_refs.clear();
FactorCollection& fc = FactorCollection::Instance();
for (size_t file_id = 0; file_id < refs.size(); file_id++) {
for (size_t sent_id = 0; sent_id < refs[file_id].size(); sent_id++) {
const string& ref = refs[file_id][sent_id];
vector<string> refTokens = Tokenize(ref);
if (file_id == 0)
m_refs[sent_id] = RefValue();
pair<vector<size_t>,NGrams>& ref_pair = m_refs[sent_id];
(ref_pair.first).push_back(refTokens.size());
for (size_t order = 1; order <= BleuScoreState::bleu_order; order++) {
for (size_t end_idx = order; end_idx <= refTokens.size(); end_idx++) {
Phrase ngram(1);
for (size_t s_idx = end_idx - order; s_idx < end_idx; s_idx++) {
const Factor* f = fc.AddFactor(Output, 0, refTokens[s_idx]);
Word w;
w.SetFactor(0, f);
ngram.AddWord(w);
}
ref_pair.second[ngram] += 1;
}
}
}
}
// cerr << "Number of ref files: " << refs.size() << endl;
// for (size_t i = 0; i < m_refs.size(); ++i) {
// cerr << "Sent id " << i << ", number of references: " << (m_refs[i].first).size() << endl;
// }
}
void BleuScoreFeature::SetCurrSourceLength(size_t source_length)
{
m_cur_source_length = source_length;
}
void BleuScoreFeature::SetCurrNormSourceLength(size_t source_length)
{
m_cur_norm_source_length = source_length;
}
// m_refs[sent_id][[vector<length>][ngrams]]
void BleuScoreFeature::SetCurrShortestRefLength(size_t sent_id)
{
// look for shortest reference
int shortestRef = -1;
for (size_t i = 0; i < (m_refs[sent_id].first).size(); ++i) {
if (shortestRef == -1 || (m_refs[sent_id].first)[i] < shortestRef)
shortestRef = (m_refs[sent_id].first)[i];
}
m_cur_ref_length = shortestRef;
// cerr << "Set shortest cur_ref_length: " << m_cur_ref_length << endl;
}
void BleuScoreFeature::SetCurrAvgRefLength(size_t sent_id)
{
// compute average reference length
size_t sum = 0;
size_t numberRefs = (m_refs[sent_id].first).size();
for (size_t i = 0; i < numberRefs; ++i) {
sum += (m_refs[sent_id].first)[i];
}
m_cur_ref_length = (float)sum/numberRefs;
// cerr << "Set average cur_ref_length: " << m_cur_ref_length << endl;
}
void BleuScoreFeature::SetCurrReferenceNgrams(size_t sent_id)
{
m_cur_ref_ngrams = m_refs[sent_id].second;
}
size_t BleuScoreFeature::GetShortestRefIndex(size_t ref_id)
{
// look for shortest reference
int shortestRef = -1;
size_t shortestRefIndex = 0;
for (size_t i = 0; i < (m_refs[ref_id].first).size(); ++i) {
if (shortestRef == -1 || (m_refs[ref_id].first)[i] < shortestRef) {
shortestRef = (m_refs[ref_id].first)[i];
shortestRefIndex = i;
}
}
return shortestRefIndex;
}
/*
* Update the pseudo-document O after each translation of a source sentence.
* (O is an exponentially-weighted moving average of vectors c(e;{r_k}))
* O = m_historySmoothing * (O + c(e_oracle))
* O_f = m_historySmoothing * (O_f + |f|) input length of pseudo-document
*/
void BleuScoreFeature::UpdateHistory(const vector< const Word* >& hypo)
{
Phrase phrase(hypo);
std::vector< size_t > ngram_counts(BleuScoreState::bleu_order);
std::vector< size_t > ngram_matches(BleuScoreState::bleu_order);
// compute vector c(e;{r_k}):
// vector of effective reference length, number of ngrams in e, number of ngram matches between e and r_k
GetNgramMatchCounts(phrase, m_cur_ref_ngrams, ngram_counts, ngram_matches, 0);
// update counts and matches for every ngram length with counts from hypo
for (size_t i = 0; i < BleuScoreState::bleu_order; i++) {
m_count_history[i] = m_historySmoothing * (m_count_history[i] + ngram_counts[i]);
m_match_history[i] = m_historySmoothing * (m_match_history[i] + ngram_matches[i]);
}
// update counts for reference and target length
m_source_length_history = m_historySmoothing * (m_source_length_history + m_cur_source_length);
m_target_length_history = m_historySmoothing * (m_target_length_history + hypo.size());
m_ref_length_history = m_historySmoothing * (m_ref_length_history + m_cur_ref_length);
}
/*
* Update history with a batch of translations
*/
void BleuScoreFeature::UpdateHistory(const vector< vector< const Word* > >& hypos, vector<size_t>& sourceLengths, vector<size_t>& ref_ids, size_t rank, size_t epoch)
{
for (size_t ref_id = 0; ref_id < hypos.size(); ++ref_id) {
Phrase phrase(hypos[ref_id]);
std::vector< size_t > ngram_counts(BleuScoreState::bleu_order);
std::vector< size_t > ngram_matches(BleuScoreState::bleu_order);
// set current source and reference information for each oracle in the batch
size_t cur_source_length = sourceLengths[ref_id];
size_t hypo_length = hypos[ref_id].size();
size_t cur_ref_length = GetClosestRefLength(ref_ids[ref_id], hypo_length);
NGrams cur_ref_ngrams = m_refs[ref_ids[ref_id]].second;
cerr << "reference length: " << cur_ref_length << endl;
// compute vector c(e;{r_k}):
// vector of effective reference length, number of ngrams in e, number of ngram matches between e and r_k
GetNgramMatchCounts(phrase, cur_ref_ngrams, ngram_counts, ngram_matches, 0);
// update counts and matches for every ngram length with counts from hypo
for (size_t i = 0; i < BleuScoreState::bleu_order; i++) {
m_count_history[i] += ngram_counts[i];
m_match_history[i] += ngram_matches[i];
// do this for last position in batch
if (ref_id == hypos.size() - 1) {
m_count_history[i] *= m_historySmoothing;
m_match_history[i] *= m_historySmoothing;
}
}
// update counts for reference and target length
m_source_length_history += cur_source_length;
m_target_length_history += hypos[ref_id].size();
m_ref_length_history += cur_ref_length;
// do this for last position in batch
if (ref_id == hypos.size() - 1) {
cerr << "Rank " << rank << ", epoch " << epoch << " ,source length history: " << m_source_length_history << " --> " << m_source_length_history * m_historySmoothing << endl;
cerr << "Rank " << rank << ", epoch " << epoch << " ,target length history: " << m_target_length_history << " --> " << m_target_length_history * m_historySmoothing << endl;
m_source_length_history *= m_historySmoothing;
m_target_length_history *= m_historySmoothing;
m_ref_length_history *= m_historySmoothing;
}
}
}
/*
* Print batch of reference translations
*/
/*void BleuScoreFeature::PrintReferenceLength(const vector<size_t>& ref_ids) {
for (size_t ref_id = 0; ref_id < ref_ids.size(); ++ref_id){
size_t cur_ref_length = (m_refs[ref_ids[ref_id]].first)[0]; // TODO!!
cerr << "reference length: " << cur_ref_length << endl;
}
}*/
size_t BleuScoreFeature::GetClosestRefLength(size_t ref_id, int hypoLength)
{
// look for closest reference
int currentDist = -1;
int closestRefLength = -1;
for (size_t i = 0; i < (m_refs[ref_id].first).size(); ++i) {
if (closestRefLength == -1 || abs(hypoLength - (int)(m_refs[ref_id].first)[i]) < currentDist) {
closestRefLength = (m_refs[ref_id].first)[i];
currentDist = abs(hypoLength - (int)(m_refs[ref_id].first)[i]);
}
}
return (size_t)closestRefLength;
}
/*
* Given a phrase (current translation) calculate its ngram counts and
* its ngram matches against the ngrams in the reference translation
*/
void BleuScoreFeature::GetNgramMatchCounts(Phrase& phrase,
const NGrams& ref_ngram_counts,
std::vector< size_t >& ret_counts,
std::vector< size_t >& ret_matches,
size_t skip_first) const
{
NGrams::const_iterator ref_ngram_counts_iter;
size_t ngram_start_idx, ngram_end_idx;
// Chiang et al (2008) use unclipped counts of ngram matches
for (size_t end_idx = skip_first; end_idx < phrase.GetSize(); end_idx++) {
for (size_t order = 0; order < BleuScoreState::bleu_order; order++) {
if (order > end_idx) break;
ngram_end_idx = end_idx;
ngram_start_idx = end_idx - order;
Phrase ngram = phrase.GetSubString(Range(ngram_start_idx, ngram_end_idx), 0);
ret_counts[order]++;
ref_ngram_counts_iter = ref_ngram_counts.find(ngram);
if (ref_ngram_counts_iter != ref_ngram_counts.end())
ret_matches[order]++;
}
}
}
// score ngrams of words that have been added before the previous word span
void BleuScoreFeature::GetNgramMatchCounts_prefix(Phrase& phrase,
const NGrams& ref_ngram_counts,
std::vector< size_t >& ret_counts,
std::vector< size_t >& ret_matches,
size_t new_start_indices,
size_t last_end_index) const
{
NGrams::const_iterator ref_ngram_counts_iter;
size_t ngram_start_idx, ngram_end_idx;
// Chiang et al (2008) use unclipped counts of ngram matches
for (size_t start_idx = 0; start_idx < new_start_indices; start_idx++) {
for (size_t order = 0; order < BleuScoreState::bleu_order; order++) {
ngram_start_idx = start_idx;
ngram_end_idx = start_idx + order;
if (order > ngram_end_idx) break;
if (ngram_end_idx > last_end_index) break;
Phrase ngram = phrase.GetSubString(Range(ngram_start_idx, ngram_end_idx), 0);
ret_counts[order]++;
ref_ngram_counts_iter = ref_ngram_counts.find(ngram);
if (ref_ngram_counts_iter != ref_ngram_counts.end())
ret_matches[order]++;
}
}
}
// score ngrams around the overlap of two previously scored phrases
void BleuScoreFeature::GetNgramMatchCounts_overlap(Phrase& phrase,
const NGrams& ref_ngram_counts,
std::vector< size_t >& ret_counts,
std::vector< size_t >& ret_matches,
size_t overlap_index) const
{
NGrams::const_iterator ref_ngram_counts_iter;
size_t ngram_start_idx, ngram_end_idx;
// Chiang et al (2008) use unclipped counts of ngram matches
for (size_t end_idx = overlap_index; end_idx < phrase.GetSize(); end_idx++) {
if (end_idx >= (overlap_index+BleuScoreState::bleu_order-1)) break;
for (size_t order = 0; order < BleuScoreState::bleu_order; order++) {
if (order > end_idx) break;
ngram_end_idx = end_idx;
ngram_start_idx = end_idx - order;
if (ngram_start_idx >= overlap_index) continue; // only score ngrams that span the overlap point
Phrase ngram = phrase.GetSubString(Range(ngram_start_idx, ngram_end_idx), 0);
ret_counts[order]++;
ref_ngram_counts_iter = ref_ngram_counts.find(ngram);
if (ref_ngram_counts_iter != ref_ngram_counts.end())
ret_matches[order]++;
}
}
}
void BleuScoreFeature::GetClippedNgramMatchesAndCounts(Phrase& phrase,
const NGrams& ref_ngram_counts,
std::vector< size_t >& ret_counts,
std::vector< size_t >& ret_matches,
size_t skip_first) const
{
NGrams::const_iterator ref_ngram_counts_iter;
size_t ngram_start_idx, ngram_end_idx;
Matches ngram_matches;
for (size_t end_idx = skip_first; end_idx < phrase.GetSize(); end_idx++) {
for (size_t order = 0; order < BleuScoreState::bleu_order; order++) {
if (order > end_idx) break;
ngram_end_idx = end_idx;
ngram_start_idx = end_idx - order;
Phrase ngram = phrase.GetSubString(Range(ngram_start_idx, ngram_end_idx), 0);
ret_counts[order]++;
ref_ngram_counts_iter = ref_ngram_counts.find(ngram);
if (ref_ngram_counts_iter != ref_ngram_counts.end()) {
ngram_matches[order][ngram]++;
}
}
}
// clip ngram matches
for (size_t order = 0; order < BleuScoreState::bleu_order; order++) {
NGrams::const_iterator iter;
// iterate over ngram counts for every ngram order
for (iter=ngram_matches[order].begin(); iter != ngram_matches[order].end(); ++iter) {
ref_ngram_counts_iter = ref_ngram_counts.find(iter->first);
if (iter->second > ref_ngram_counts_iter->second) {
ret_matches[order] += ref_ngram_counts_iter->second;
} else {
ret_matches[order] += iter->second;
}
}
}
}
/*
* Given a previous state, compute Bleu score for the updated state with an additional target
* phrase translated.
*/
FFState* BleuScoreFeature::EvaluateWhenApplied(const Hypothesis& cur_hypo,
const FFState* prev_state,
ScoreComponentCollection* accumulator) const
{
if (!m_enabled) return new BleuScoreState(m_is_syntax);
NGrams::const_iterator reference_ngrams_iter;
const BleuScoreState& ps = static_cast<const BleuScoreState&>(*prev_state);
BleuScoreState* new_state = new BleuScoreState(ps);
float old_bleu, new_bleu;
size_t num_new_words, ctx_start_idx, ctx_end_idx;
// Calculate old bleu;
old_bleu = CalculateBleu(new_state);
// Get context and append new words.
num_new_words = cur_hypo.GetCurrTargetLength();
if (num_new_words == 0) {
return new_state;
}
Phrase new_words = ps.m_words;
new_words.Append(cur_hypo.GetCurrTargetPhrase());
//cerr << "NW: " << new_words << endl;
// get ngram matches for new words
GetNgramMatchCounts(new_words,
m_cur_ref_ngrams,
new_state->m_ngram_counts,
new_state->m_ngram_matches,
new_state->m_words.GetSize()); // number of words in previous states
// Update state variables
ctx_end_idx = new_words.GetSize()-1;
size_t bleu_context_length = BleuScoreState::bleu_order -1;
if (ctx_end_idx > bleu_context_length) {
ctx_start_idx = ctx_end_idx - bleu_context_length;
} else {
ctx_start_idx = 0;
}
const Bitmap &coverageVector = cur_hypo.GetWordsBitmap();
new_state->m_source_length = coverageVector.GetNumWordsCovered();
new_state->m_words = new_words.GetSubString(Range(ctx_start_idx,
ctx_end_idx));
new_state->m_target_length += cur_hypo.GetCurrTargetLength();
// we need a scaled reference length to compare the current target phrase to the corresponding reference phrase
new_state->m_scaled_ref_length = m_cur_ref_length *
((float)coverageVector.GetNumWordsCovered()/coverageVector.GetSize());
// Calculate new bleu.
new_bleu = CalculateBleu(new_state);
// Set score to new Bleu score
accumulator->PlusEquals(this, new_bleu - old_bleu);
return new_state;
}
FFState* BleuScoreFeature::EvaluateWhenApplied(const ChartHypothesis& cur_hypo, int featureID,
ScoreComponentCollection* accumulator ) const
{
if (!m_enabled) return new BleuScoreState(m_is_syntax);
NGrams::const_iterator reference_ngrams_iter;
const Phrase& curr_target_phrase = static_cast<const Phrase&>(cur_hypo.GetCurrTargetPhrase());
// cerr << "\nCur target phrase: " << cur_hypo.GetTargetLHS() << " --> " << curr_target_phrase << endl;
// Calculate old bleu of previous states
float old_bleu = 0, new_bleu = 0;
size_t num_old_words = 0, num_words_first_prev = 0;
size_t num_words_added_left = 0, num_words_added_right = 0;
// double-check cases where more than two previous hypotheses were combined
assert(cur_hypo.GetPrevHypos().size() <= 2);
BleuScoreState* new_state;
if (cur_hypo.GetPrevHypos().size() == 0)
new_state = new BleuScoreState(m_is_syntax);
else {
const FFState* prev_state_zero = cur_hypo.GetPrevHypo(0)->GetFFState(featureID);
const BleuScoreState& ps_zero = static_cast<const BleuScoreState&>(*prev_state_zero);
new_state = new BleuScoreState(ps_zero);
num_words_first_prev = ps_zero.m_target_length;
for (size_t i = 0; i < cur_hypo.GetPrevHypos().size(); ++i) {
const FFState* prev_state = cur_hypo.GetPrevHypo(i)->GetFFState(featureID);
const BleuScoreState* ps = static_cast<const BleuScoreState*>(prev_state);
BleuScoreState* ps_nonConst = const_cast<BleuScoreState*>(ps);
// cerr << "prev phrase: " << cur_hypo.GetPrevHypo(i)->GetOutputPhrase()
// << " ( " << cur_hypo.GetPrevHypo(i)->GetTargetLHS() << ")" << endl;
old_bleu += CalculateBleu(ps_nonConst);
num_old_words += ps->m_target_length;
if (i > 0)
// add ngram matches from other previous states
new_state->AddNgramCountAndMatches(ps_nonConst->m_ngram_counts, ps_nonConst->m_ngram_matches);
}
}
// check if we are already done (don't add <s> and </s>)
size_t numWordsCovered = cur_hypo.GetCurrSourceRange().GetNumWordsCovered();
if (numWordsCovered == m_cur_source_length) {
// Bleu score stays the same, do not need to add anything
//accumulator->PlusEquals(this, 0);
return new_state;
}
// set new context
Phrase new_words = cur_hypo.GetOutputPhrase();
new_state->m_words = new_words;
size_t num_curr_words = new_words.GetSize();
// get ngram matches for new words
if (num_old_words == 0) {
// cerr << "compute right ngram context" << endl;
GetNgramMatchCounts(new_words,
m_cur_ref_ngrams,
new_state->m_ngram_counts,
new_state->m_ngram_matches,
0);
} else if (new_words.GetSize() == num_old_words) {
// two hypotheses were glued together, compute new ngrams on the basis of first hypothesis
num_words_added_right = num_curr_words - num_words_first_prev;
// score around overlap point
// cerr << "compute overlap ngram context (" << (num_words_first_prev) << ")" << endl;
GetNgramMatchCounts_overlap(new_words,
m_cur_ref_ngrams,
new_state->m_ngram_counts,
new_state->m_ngram_matches,
num_words_first_prev);
} else if (num_old_words + curr_target_phrase.GetNumTerminals() == num_curr_words) {
assert(curr_target_phrase.GetSize() == curr_target_phrase.GetNumTerminals()+1);
// previous hypothesis + rule with 1 non-terminal were combined (NT substituted by Ts)
for (size_t i = 0; i < curr_target_phrase.GetSize(); ++i)
if (curr_target_phrase.GetWord(i).IsNonTerminal()) {
num_words_added_left = i;
num_words_added_right = curr_target_phrase.GetSize() - (i+1);
break;
}
// left context
// cerr << "compute left ngram context" << endl;
if (num_words_added_left > 0)
GetNgramMatchCounts_prefix(new_words,
m_cur_ref_ngrams,
new_state->m_ngram_counts,
new_state->m_ngram_matches,
num_words_added_left,
num_curr_words - num_words_added_right - 1);
// right context
// cerr << "compute right ngram context" << endl;
if (num_words_added_right > 0)
GetNgramMatchCounts(new_words,
m_cur_ref_ngrams,
new_state->m_ngram_counts,
new_state->m_ngram_matches,
num_words_added_left + num_old_words);
} else {
cerr << "undefined state.. " << endl;
exit(1);
}
// Update state variables
size_t ctx_start_idx = 0;
size_t ctx_end_idx = new_words.GetSize()-1;
size_t bleu_context_length = BleuScoreState::bleu_order -1;
if (ctx_end_idx > bleu_context_length) {
ctx_start_idx = ctx_end_idx - bleu_context_length;
}
new_state->m_source_length = cur_hypo.GetCurrSourceRange().GetNumWordsCovered();
new_state->m_words = new_words.GetSubString(Range(ctx_start_idx, ctx_end_idx));
new_state->m_target_length = cur_hypo.GetOutputPhrase().GetSize();
// we need a scaled reference length to compare the current target phrase to the corresponding
// reference phrase
size_t cur_source_length = m_cur_source_length;
new_state->m_scaled_ref_length = m_cur_ref_length * (float(new_state->m_source_length)/cur_source_length);
// Calculate new bleu.
new_bleu = CalculateBleu(new_state);
// Set score to new Bleu score
accumulator->PlusEquals(this, new_bleu - old_bleu);
return new_state;
}
/**
* Calculate real sentence Bleu score of complete translation
*/
float BleuScoreFeature::CalculateBleu(Phrase translation) const
{
if (translation.GetSize() == 0)
return 0.0;
Phrase normTranslation = translation;
// remove start and end symbol for chart decoding
if (m_cur_source_length != m_cur_norm_source_length) {
Range* range = new Range(1, translation.GetSize()-2);
normTranslation = translation.GetSubString(*range);
}
// get ngram matches for translation
BleuScoreState* state = new BleuScoreState(m_is_syntax);
GetClippedNgramMatchesAndCounts(normTranslation,
m_cur_ref_ngrams,
state->m_ngram_counts,
state->m_ngram_matches,
0); // number of words in previous states
// set state variables
state->m_words = normTranslation;
state->m_source_length = m_cur_norm_source_length;
state->m_target_length = normTranslation.GetSize();
state->m_scaled_ref_length = m_cur_ref_length;
// Calculate bleu.
return CalculateBleu(state);
}
/*
* Calculate Bleu score for a partial hypothesis given as state.
*/
float BleuScoreFeature::CalculateBleu(BleuScoreState* state) const
{
if (!state->m_ngram_counts[0]) return 0;
if (!state->m_ngram_matches[0]) return 0; // if we have no unigram matches, score should be 0
float precision = 1.0;
float smooth = 1;
float smoothed_count, smoothed_matches;
if (m_sentence_bleu || m_simple_history_bleu) {
// Calculate geometric mean of modified ngram precisions
// BLEU = BP * exp(SUM_1_4 1/4 * log p_n)
// = BP * 4th root(PRODUCT_1_4 p_n)
for (size_t i = 0; i < BleuScoreState::bleu_order; i++) {
if (state->m_ngram_counts[i]) {
smoothed_matches = state->m_ngram_matches[i];
smoothed_count = state->m_ngram_counts[i];
switch (m_smoothing_scheme) {
case PLUS_ONE:
default:
if (i > 0) {
// smoothing for all n > 1
smoothed_matches += 1;
smoothed_count += 1;
}
break;
case PLUS_POINT_ONE:
if (i > 0) {
// smoothing for all n > 1
smoothed_matches += 0.1;
smoothed_count += 0.1;
}
break;
case PAPINENI:
if (state->m_ngram_matches[i] == 0) {
smooth *= 0.5;
smoothed_matches += smooth;
smoothed_count += smooth;
}
break;
}
if (m_simple_history_bleu) {
smoothed_matches += m_match_history[i];
smoothed_count += m_count_history[i];
}
precision *= smoothed_matches/smoothed_count;
}
}
// take geometric mean
precision = pow(precision, (float)1/4);
// Apply brevity penalty if applicable.
// BP = 1 if c > r
// BP = e^(1- r/c)) if c <= r
// where
// c: length of the candidate translation
// r: effective reference length (sum of best match lengths for each candidate sentence)
if (m_simple_history_bleu) {
if ((m_target_length_history + state->m_target_length) < (m_ref_length_history + state->m_scaled_ref_length)) {
float smoothed_target_length = m_target_length_history + state->m_target_length;
float smoothed_ref_length = m_ref_length_history + state->m_scaled_ref_length;
precision *= exp(1 - (smoothed_ref_length/smoothed_target_length));
}
} else {
if (state->m_target_length < state->m_scaled_ref_length) {
float target_length = state->m_target_length;
float ref_length = state->m_scaled_ref_length;
precision *= exp(1 - (ref_length/target_length));
}
}
//cerr << "precision: " << precision << endl;
// Approximate bleu score as of Chiang/Resnik is scaled by the size of the input:
// B(e;f,{r_k}) = (O_f + |f|) * BLEU(O + c(e;{r_k}))
// where c(e;) is a vector of reference length, ngram counts and ngram matches
if (m_scale_by_input_length) {
precision *= m_cur_norm_source_length;
} else if (m_scale_by_avg_input_length) {
precision *= m_avg_input_length;
} else if (m_scale_by_inverse_length) {
precision *= (100/m_cur_norm_source_length);
} else if (m_scale_by_avg_inverse_length) {
precision *= (100/m_avg_input_length);
}
return precision * m_scale_by_x;
} else {
// Revised history BLEU: compute Bleu in the context of the pseudo-document
// B(b) = size_of_oracle_doc * (Bleu(B_hist + b) - Bleu(B_hist))
// Calculate geometric mean of modified ngram precisions
// BLEU = BP * exp(SUM_1_4 1/4 * log p_n)
// = BP * 4th root(PRODUCT_1_4 p_n)
for (size_t i = 0; i < BleuScoreState::bleu_order; i++) {
if (state->m_ngram_counts[i]) {
smoothed_matches = m_match_history[i] + state->m_ngram_matches[i] + 0.1;
smoothed_count = m_count_history[i] + state->m_ngram_counts[i] + 0.1;
precision *= smoothed_matches/smoothed_count;
}
}
// take geometric mean
precision = pow(precision, (float)1/4);
// Apply brevity penalty if applicable.
if ((m_target_length_history + state->m_target_length) < (m_ref_length_history + state->m_scaled_ref_length))
precision *= exp(1 - ((m_ref_length_history + state->m_scaled_ref_length)/(m_target_length_history + state->m_target_length)));
cerr << "precision: " << precision << endl;
// **BLEU score of pseudo-document**
float precision_pd = 1.0;
if (m_target_length_history > 0) {
for (size_t i = 0; i < BleuScoreState::bleu_order; i++)
if (m_count_history[i] != 0)
precision_pd *= (m_match_history[i] + 0.1)/(m_count_history[i] + 0.1);
// take geometric mean
precision_pd = pow(precision_pd, (float)1/4);
// Apply brevity penalty if applicable.
if (m_target_length_history < m_ref_length_history)
precision_pd *= exp(1 - (m_ref_length_history/m_target_length_history));
} else
precision_pd = 0;
// **end BLEU of pseudo-document**
cerr << "precision pd: " << precision_pd << endl;
float sentence_impact;
if (m_target_length_history > 0)
sentence_impact = m_target_length_history * (precision - precision_pd);
else
sentence_impact = precision;
cerr << "sentence impact: " << sentence_impact << endl;
return sentence_impact * m_scale_by_x;
}
}
const FFState* BleuScoreFeature::EmptyHypothesisState(const InputType& input) const
{
return new BleuScoreState(m_is_syntax);
}
bool BleuScoreFeature::IsUseable(const FactorMask &mask) const
{
// TODO: Was this meant to return mask[0]!?
bool ret = mask[0];
return 0;
}
void
BleuScoreFeature::
Load(AllOptions::ptr const& opts)
{
m_is_syntax = is_syntax(opts->search.algo);
}
} // namespace.
|