File size: 6,128 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
#include "ConstrainedDecoding.h"
#include "moses/Hypothesis.h"
#include "moses/Manager.h"
#include "moses/ChartHypothesis.h"
#include "moses/ChartManager.h"
#include "moses/StaticData.h"
#include "moses/InputFileStream.h"
#include "moses/Util.h"
#include "util/exception.hh"
using namespace std;
namespace Moses
{
ConstrainedDecodingState::ConstrainedDecodingState(const Hypothesis &hypo)
{
hypo.GetOutputPhrase(m_outputPhrase);
}
ConstrainedDecodingState::ConstrainedDecodingState(const ChartHypothesis &hypo)
{
hypo.GetOutputPhrase(m_outputPhrase);
}
size_t ConstrainedDecodingState::hash() const
{
size_t ret = hash_value(m_outputPhrase);
return ret;
}
bool ConstrainedDecodingState::operator==(const FFState& other) const
{
const ConstrainedDecodingState &otherFF = static_cast<const ConstrainedDecodingState&>(other);
bool ret = m_outputPhrase == otherFF.m_outputPhrase;
return ret;
}
//////////////////////////////////////////////////////////////////
ConstrainedDecoding::ConstrainedDecoding(const std::string &line)
:StatefulFeatureFunction(1, line)
,m_maxUnknowns(0)
,m_negate(false)
,m_soft(false)
{
m_tuneable = false;
ReadParameters();
}
void ConstrainedDecoding::Load(AllOptions::ptr const& opts)
{
m_options = opts;
const StaticData &staticData = StaticData::Instance();
bool addBeginEndWord
= ((opts->search.algo == CYKPlus) || (opts->search.algo == ChartIncremental));
for(size_t i = 0; i < m_paths.size(); ++i) {
InputFileStream constraintFile(m_paths[i]);
std::string line;
long sentenceID = opts->output.start_translation_id - 1 ;
while (getline(constraintFile, line)) {
vector<string> vecStr = Tokenize(line, "\t");
Phrase phrase(0);
if (vecStr.size() == 1) {
sentenceID++;
phrase.CreateFromString(Output, opts->output.factor_order, vecStr[0], NULL);
} else if (vecStr.size() == 2) {
sentenceID = Scan<long>(vecStr[0]);
phrase.CreateFromString(Output, opts->output.factor_order, vecStr[1], NULL);
} else {
UTIL_THROW(util::Exception, "Reference file not loaded");
}
if (addBeginEndWord) {
phrase.InitStartEndWord();
}
m_constraints[sentenceID].push_back(phrase);
}
}
}
std::vector<float> ConstrainedDecoding::DefaultWeights() const
{
UTIL_THROW_IF2(m_numScoreComponents != 1,
"ConstrainedDecoding must only have 1 score");
vector<float> ret(1, 1);
return ret;
}
template <class H, class M>
const std::vector<Phrase> *GetConstraint(const std::map<long,std::vector<Phrase> > &constraints, const H &hypo)
{
const M &mgr = hypo.GetManager();
const InputType &input = mgr.GetSource();
long id = input.GetTranslationId();
map<long,std::vector<Phrase> >::const_iterator iter;
iter = constraints.find(id);
if (iter == constraints.end()) {
UTIL_THROW(util::Exception, "Couldn't find reference " << id);
return NULL;
} else {
return &iter->second;
}
}
FFState* ConstrainedDecoding::EvaluateWhenApplied(
const Hypothesis& hypo,
const FFState* prev_state,
ScoreComponentCollection* accumulator) const
{
const std::vector<Phrase> *ref = GetConstraint<Hypothesis, Manager>(m_constraints, hypo);
assert(ref);
ConstrainedDecodingState *ret = new ConstrainedDecodingState(hypo);
const Phrase &outputPhrase = ret->GetPhrase();
size_t searchPos = NOT_FOUND;
size_t i = 0;
size_t size = 0;
while(searchPos == NOT_FOUND && i < ref->size()) {
searchPos = (*ref)[i].Find(outputPhrase, m_maxUnknowns);
size = (*ref)[i].GetSize();
i++;
}
float score;
if (hypo.IsSourceCompleted()) {
// translated entire sentence.
bool match = (searchPos == 0) && (size == outputPhrase.GetSize());
if (!m_negate) {
score = match ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
} else {
score = !match ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
}
} else if (m_negate) {
// keep all derivations
score = 0;
} else {
score = (searchPos != NOT_FOUND) ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
}
accumulator->PlusEquals(this, score);
return ret;
}
FFState* ConstrainedDecoding::EvaluateWhenApplied(
const ChartHypothesis &hypo,
int /* featureID - used to index the state in the previous hypotheses */,
ScoreComponentCollection* accumulator) const
{
const std::vector<Phrase> *ref = GetConstraint<ChartHypothesis, ChartManager>(m_constraints, hypo);
assert(ref);
const ChartManager &mgr = hypo.GetManager();
const Sentence &source = static_cast<const Sentence&>(mgr.GetSource());
ConstrainedDecodingState *ret = new ConstrainedDecodingState(hypo);
const Phrase &outputPhrase = ret->GetPhrase();
size_t searchPos = NOT_FOUND;
size_t i = 0;
size_t size = 0;
while(searchPos == NOT_FOUND && i < ref->size()) {
searchPos = (*ref)[i].Find(outputPhrase, m_maxUnknowns);
size = (*ref)[i].GetSize();
i++;
}
float score;
if (hypo.GetCurrSourceRange().GetStartPos() == 0 &&
hypo.GetCurrSourceRange().GetEndPos() == source.GetSize() - 1) {
// translated entire sentence.
bool match = (searchPos == 0) && (size == outputPhrase.GetSize());
if (!m_negate) {
score = match ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
} else {
score = !match ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
}
} else if (m_negate) {
// keep all derivations
score = 0;
} else {
score = (searchPos != NOT_FOUND) ? 0 : - ( m_soft ? 1 : std::numeric_limits<float>::infinity());
}
accumulator->PlusEquals(this, score);
return ret;
}
void ConstrainedDecoding::SetParameter(const std::string& key, const std::string& value)
{
if (key == "path") {
m_paths = Tokenize(value, ",");
} else if (key == "max-unknowns") {
m_maxUnknowns = Scan<int>(value);
} else if (key == "negate") {
m_negate = Scan<bool>(value);
} else if (key == "soft") {
m_soft = Scan<bool>(value);
} else {
StatefulFeatureFunction::SetParameter(key, value);
}
}
}
|