File size: 14,051 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
#include "GlobalLexicalModelUnlimited.h"
#include <fstream>
#include "moses/StaticData.h"
#include "moses/InputFileStream.h"
#include "moses/Hypothesis.h"
#include "moses/TranslationTask.h"
#include "util/string_piece_hash.hh"
#include "util/string_stream.hh"
using namespace std;
namespace Moses
{
GlobalLexicalModelUnlimited::GlobalLexicalModelUnlimited(const std::string &line)
:StatelessFeatureFunction(0, line)
{
UTIL_THROW(util::Exception,
"GlobalLexicalModelUnlimited hasn't been refactored for new feature function framework yet"); // TODO need to update arguments to key=value
const vector<string> modelSpec = Tokenize(line);
for (size_t i = 0; i < modelSpec.size(); i++ ) {
bool ignorePunctuation = true, biasFeature = false, restricted = false;
size_t context = 0;
string filenameSource, filenameTarget;
vector< string > factors;
vector< string > spec = Tokenize(modelSpec[i]," ");
// read optional punctuation and bias specifications
if (spec.size() > 0) {
if (spec.size() != 2 && spec.size() != 3 && spec.size() != 4 && spec.size() != 6) {
std::cerr << "Format of glm feature is <factor-src>-<factor-tgt> [ignore-punct] [use-bias] "
<< "[context-type] [filename-src filename-tgt]";
//return false;
}
factors = Tokenize(spec[0],"-");
if (spec.size() >= 2)
ignorePunctuation = Scan<size_t>(spec[1]);
if (spec.size() >= 3)
biasFeature = Scan<size_t>(spec[2]);
if (spec.size() >= 4)
context = Scan<size_t>(spec[3]);
if (spec.size() == 6) {
filenameSource = spec[4];
filenameTarget = spec[5];
restricted = true;
}
} else
factors = Tokenize(modelSpec[i],"-");
if ( factors.size() != 2 ) {
std::cerr << "Wrong factor definition for global lexical model unlimited: " << modelSpec[i];
//return false;
}
const vector<FactorType> inputFactors = Tokenize<FactorType>(factors[0],",");
const vector<FactorType> outputFactors = Tokenize<FactorType>(factors[1],",");
throw runtime_error("GlobalLexicalModelUnlimited should be reimplemented as a stateful feature");
GlobalLexicalModelUnlimited* glmu = NULL; // new GlobalLexicalModelUnlimited(inputFactors, outputFactors, biasFeature, ignorePunctuation, context);
if (restricted) {
cerr << "loading word translation word lists from " << filenameSource << " and " << filenameTarget << endl;
if (!glmu->Load(filenameSource, filenameTarget)) {
std::cerr << "Unable to load word lists for word translation feature from files "
<< filenameSource
<< " and "
<< filenameTarget;
//return false;
}
}
}
}
bool GlobalLexicalModelUnlimited::Load(const std::string &filePathSource,
const std::string &filePathTarget)
{
// restricted source word vocabulary
ifstream inFileSource(filePathSource.c_str());
if (!inFileSource) {
cerr << "could not open file " << filePathSource << endl;
return false;
}
std::string line;
while (getline(inFileSource, line)) {
m_vocabSource.insert(line);
}
inFileSource.close();
// restricted target word vocabulary
ifstream inFileTarget(filePathTarget.c_str());
if (!inFileTarget) {
cerr << "could not open file " << filePathTarget << endl;
return false;
}
while (getline(inFileTarget, line)) {
m_vocabTarget.insert(line);
}
inFileTarget.close();
m_unrestricted = false;
return true;
}
void GlobalLexicalModelUnlimited::InitializeForInput(ttasksptr const& ttask)
{
UTIL_THROW_IF2(ttask->GetSource()->GetType() != SentenceInput,
"GlobalLexicalModel works only with sentence input.");
Sentence const* s = reinterpret_cast<Sentence const*>(ttask->GetSource().get());
m_local.reset(new ThreadLocalStorage);
m_local->input = s;
}
void GlobalLexicalModelUnlimited::EvaluateWhenApplied(const Hypothesis& cur_hypo, ScoreComponentCollection* accumulator) const
{
const Sentence& input = *(m_local->input);
const TargetPhrase& targetPhrase = cur_hypo.GetCurrTargetPhrase();
for(size_t targetIndex = 0; targetIndex < targetPhrase.GetSize(); targetIndex++ ) {
StringPiece targetString = targetPhrase.GetWord(targetIndex).GetString(0); // TODO: change for other factors
if (m_ignorePunctuation) {
// check if first char is punctuation
char firstChar = targetString[0];
CharHash::const_iterator charIterator = m_punctuationHash.find( firstChar );
if(charIterator != m_punctuationHash.end())
continue;
}
if (m_biasFeature) {
util::StringStream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << "**BIAS**";
accumulator->SparsePlusEquals(feature.str(), 1);
}
boost::unordered_set<uint64_t> alreadyScored;
for(size_t sourceIndex = 0; sourceIndex < input.GetSize(); sourceIndex++ ) {
const StringPiece sourceString = input.GetWord(sourceIndex).GetString(0);
// TODO: change for other factors
if (m_ignorePunctuation) {
// check if first char is punctuation
char firstChar = sourceString[0];
CharHash::const_iterator charIterator = m_punctuationHash.find( firstChar );
if(charIterator != m_punctuationHash.end())
continue;
}
const uint64_t sourceHash = util::MurmurHashNative(sourceString.data(), sourceString.size());
if ( alreadyScored.find(sourceHash) == alreadyScored.end()) {
bool sourceExists, targetExists;
if (!m_unrestricted) {
sourceExists = FindStringPiece(m_vocabSource, sourceString ) != m_vocabSource.end();
targetExists = FindStringPiece(m_vocabTarget, targetString) != m_vocabTarget.end();
}
// no feature if vocab is in use and both words are not in restricted vocabularies
if (m_unrestricted || (sourceExists && targetExists)) {
if (m_sourceContext) {
if (sourceIndex == 0) {
// add <s> trigger feature for source
util::StringStream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << "<s>,";
feature << sourceString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
// add source words to the right of current source word as context
for(int contextIndex = sourceIndex+1; contextIndex < input.GetSize(); contextIndex++ ) {
StringPiece contextString = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool contextExists;
if (!m_unrestricted)
contextExists = FindStringPiece(m_vocabSource, contextString ) != m_vocabSource.end();
if (m_unrestricted || contextExists) {
util::StringStream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << sourceString;
feature << ",";
feature << contextString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
}
} else if (m_biphrase) {
// --> look backwards for constructing context
int globalTargetIndex = cur_hypo.GetSize() - targetPhrase.GetSize() + targetIndex;
// 1) source-target pair, trigger source word (can be discont.) and adjacent target word (bigram)
StringPiece targetContext;
if (globalTargetIndex > 0)
targetContext = cur_hypo.GetWord(globalTargetIndex-1).GetString(0); // TODO: change for other factors
else
targetContext = "<s>";
if (sourceIndex == 0) {
StringPiece sourceTrigger = "<s>";
AddFeature(accumulator, sourceTrigger, sourceString,
targetContext, targetString);
} else
for(int contextIndex = sourceIndex-1; contextIndex >= 0; contextIndex-- ) {
StringPiece sourceTrigger = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool sourceTriggerExists = false;
if (!m_unrestricted)
sourceTriggerExists = FindStringPiece(m_vocabSource, sourceTrigger ) != m_vocabSource.end();
if (m_unrestricted || sourceTriggerExists)
AddFeature(accumulator, sourceTrigger, sourceString,
targetContext, targetString);
}
// 2) source-target pair, adjacent source word (bigram) and trigger target word (can be discont.)
StringPiece sourceContext;
if (sourceIndex-1 >= 0)
sourceContext = input.GetWord(sourceIndex-1).GetString(0); // TODO: change for other factors
else
sourceContext = "<s>";
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
AddFeature(accumulator, sourceContext, sourceString,
targetTrigger, targetString);
} else
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || targetTriggerExists)
AddFeature(accumulator, sourceContext, sourceString,
targetTrigger, targetString);
}
} else if (m_bitrigger) {
// allow additional discont. triggers on both sides
int globalTargetIndex = cur_hypo.GetSize() - targetPhrase.GetSize() + targetIndex;
if (sourceIndex == 0) {
StringPiece sourceTrigger = "<s>";
bool sourceTriggerExists = true;
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
bool targetTriggerExists = true;
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
} else {
// iterate backwards over target
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
}
}
}
// iterate over both source and target
else {
// iterate backwards over source
for(int contextIndex = sourceIndex-1; contextIndex >= 0; contextIndex-- ) {
StringPiece sourceTrigger = input.GetWord(contextIndex).GetString(0); // TODO: change for other factors
bool sourceTriggerExists = false;
if (!m_unrestricted)
sourceTriggerExists = FindStringPiece(m_vocabSource, sourceTrigger ) != m_vocabSource.end();
if (globalTargetIndex == 0) {
string targetTrigger = "<s>";
bool targetTriggerExists = true;
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
} else {
// iterate backwards over target
for(int globalContextIndex = globalTargetIndex-1; globalContextIndex >= 0; globalContextIndex-- ) {
StringPiece targetTrigger = cur_hypo.GetWord(globalContextIndex).GetString(0); // TODO: change for other factors
bool targetTriggerExists = false;
if (!m_unrestricted)
targetTriggerExists = FindStringPiece(m_vocabTarget, targetTrigger ) != m_vocabTarget.end();
if (m_unrestricted || (sourceTriggerExists && targetTriggerExists))
AddFeature(accumulator, sourceTrigger, sourceString,
targetTrigger, targetString);
}
}
}
}
} else {
util::StringStream feature;
feature << "glm_";
feature << targetString;
feature << "~";
feature << sourceString;
accumulator->SparsePlusEquals(feature.str(), 1);
alreadyScored.insert(sourceHash);
}
}
}
}
}
}
void GlobalLexicalModelUnlimited::AddFeature(ScoreComponentCollection* accumulator,
StringPiece sourceTrigger, StringPiece sourceWord,
StringPiece targetTrigger, StringPiece targetWord) const
{
util::StringStream feature;
feature << "glm_";
feature << targetTrigger;
feature << ",";
feature << targetWord;
feature << "~";
feature << sourceTrigger;
feature << ",";
feature << sourceWord;
accumulator->SparsePlusEquals(feature.str(), 1);
}
}
|