File size: 5,702 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#include "InternalTree.h"
#include "moses/StaticData.h"
namespace Moses
{
InternalTree::InternalTree(const std::string & line, size_t start, size_t len, const bool nonterminal)
{
std::vector<FactorType> const& oFactors
= StaticData::Instance().options()->output.factor_order;
if (len > 0) {
m_value.CreateFromString(Output, oFactors, StringPiece(line).substr(start, len),
nonterminal);
}
}
InternalTree::InternalTree(const std::string & line, const bool nonterminal)
{
size_t found = line.find_first_of("[] ");
if (found == line.npos) {
m_value.CreateFromString(Output,
StaticData::Instance().options()->output.factor_order,
line, nonterminal);
} else {
AddSubTree(line, 0);
}
}
size_t InternalTree::AddSubTree(const std::string & line, size_t pos)
{
char token = 0;
size_t len = 0;
bool has_value = false;
while (token != ']' && pos != std::string::npos) {
size_t oldpos = pos;
pos = line.find_first_of("[] ", pos);
if (pos == std::string::npos) break;
token = line[pos];
len = pos-oldpos;
if (token == '[') {
if (has_value) {
m_children.push_back(boost::make_shared<InternalTree>(line, oldpos, len, true));
pos = m_children.back()->AddSubTree(line, pos+1);
} else {
if (len > 0) {
m_value.CreateFromString(Output,
StaticData::Instance().options()->output.factor_order,
StringPiece(line).substr(oldpos, len), false);
has_value = true;
}
pos = AddSubTree(line, pos+1);
}
} else if (token == ' ' || token == ']') {
if (len > 0 && !has_value) {
m_value.CreateFromString(Output,
StaticData::Instance().options()->output.factor_order,
StringPiece(line).substr(oldpos, len), true);
has_value = true;
} else if (len > 0) {
m_children.push_back(boost::make_shared<InternalTree>(line, oldpos, len, false));
}
if (token == ' ') {
pos++;
}
}
}
if (pos == std::string::npos) {
return line.size();
}
return std::min(line.size(),pos+1);
}
std::string InternalTree::GetString(bool start) const
{
std::string ret = "";
if (!start) {
ret += " ";
}
if (!IsTerminal()) {
ret += "[";
}
ret += m_value.GetString(StaticData::Instance().options()->output.factor_order, false);
for (std::vector<TreePointer>::const_iterator it = m_children.begin(); it != m_children.end(); ++it) {
ret += (*it)->GetString(false);
}
if (!IsTerminal()) {
ret += "]";
}
return ret;
}
void InternalTree::Combine(const std::vector<TreePointer> &previous)
{
std::vector<TreePointer>::iterator it;
bool found = false;
leafNT next_leafNT(this);
for (std::vector<TreePointer>::const_iterator it_prev = previous.begin(); it_prev != previous.end(); ++it_prev) {
found = next_leafNT(it);
if (found) {
*it = *it_prev;
} else {
std::cerr << "Warning: leaf nonterminal not found in rule; why did this happen?\n";
}
}
}
//take tree with virtual nodes (created with relax-parse --RightBinarize or --LeftBinarize) and reconstruct original tree.
void InternalTree::Unbinarize()
{
// nodes with virtual label cannot be unbinarized
if (m_value.GetString(0).empty() || m_value.GetString(0).as_string()[0] == '^') {
return;
}
//if node has child that is virtual node, get unbinarized list of children
for (std::vector<TreePointer>::iterator it = m_children.begin(); it != m_children.end(); ++it) {
if (!(*it)->IsTerminal() && (*it)->GetLabel().GetString(0).as_string()[0] == '^') {
std::vector<TreePointer> new_children;
GetUnbinarizedChildren(new_children);
m_children = new_children;
break;
}
}
//recursion
for (std::vector<TreePointer>::iterator it = m_children.begin(); it != m_children.end(); ++it) {
(*it)->Unbinarize();
}
}
//get the children of a node in a binarized tree; if a child is virtual, (transitively) replace it with its children
void InternalTree::GetUnbinarizedChildren(std::vector<TreePointer> &ret) const
{
for (std::vector<TreePointer>::const_iterator itx = m_children.begin(); itx != m_children.end(); ++itx) {
const StringPiece label = (*itx)->GetLabel().GetString(0);
if (!label.empty() && label.as_string()[0] == '^') {
(*itx)->GetUnbinarizedChildren(ret);
} else {
ret.push_back(*itx);
}
}
}
bool InternalTree::FlatSearch(const Word & label, std::vector<TreePointer>::const_iterator & it) const
{
for (it = m_children.begin(); it != m_children.end(); ++it) {
if ((*it)->GetLabel() == label) {
return true;
}
}
return false;
}
bool InternalTree::RecursiveSearch(const Word & label, std::vector<TreePointer>::const_iterator & it) const
{
for (it = m_children.begin(); it != m_children.end(); ++it) {
if ((*it)->GetLabel() == label) {
return true;
}
std::vector<TreePointer>::const_iterator it2;
if ((*it)->RecursiveSearch(label, it2)) {
it = it2;
return true;
}
}
return false;
}
bool InternalTree::RecursiveSearch(const Word & label, std::vector<TreePointer>::const_iterator & it, InternalTree const* &parent) const
{
for (it = m_children.begin(); it != m_children.end(); ++it) {
if ((*it)->GetLabel() == label) {
parent = this;
return true;
}
std::vector<TreePointer>::const_iterator it2;
if ((*it)->RecursiveSearch(label, it2, parent)) {
it = it2;
return true;
}
}
return false;
}
}
|