File size: 4,729 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
#include <sstream>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/foreach.hpp>
#include "moses/FF/FFState.h"
#include "moses/TranslationOptionList.h"
#include "LexicalReordering.h"
#include "LRState.h"
#include "moses/StaticData.h"
#include "moses/Util.h"
#include "moses/InputPath.h"
using namespace std;
using namespace boost::algorithm;
namespace Moses
{
LexicalReordering::
LexicalReordering(const std::string &line)
: StatefulFeatureFunction(line,false)
{
VERBOSE(1, "Initializing Lexical Reordering Feature.." << std::endl);
map<string,string> sparseArgs;
m_haveDefaultScores = false;
for (size_t i = 0; i < m_args.size(); ++i) {
const vector<string> &args = m_args[i];
if (args[0] == "type") {
m_configuration.reset(new LRModel(args[1]));
m_configuration->SetScoreProducer(this);
m_modelTypeString = m_configuration->GetModelString();
} else if (args[0] == "input-factor")
m_factorsF =Tokenize<FactorType>(args[1]);
else if (args[0] == "output-factor")
m_factorsE =Tokenize<FactorType>(args[1]);
else if (args[0] == "path")
m_filePath = args[1];
else if (starts_with(args[0], "sparse-"))
sparseArgs[args[0].substr(7)] = args[1];
else if (args[0] == "default-scores") {
vector<string> tokens = Tokenize(args[1],",");
for(size_t i=0; i<tokens.size(); i++)
m_defaultScores.push_back( TransformScore( Scan<float>(tokens[i])));
m_haveDefaultScores = true;
} else UTIL_THROW2("Unknown argument " + args[0]);
}
switch(m_configuration->GetCondition()) {
case LRModel::FE:
case LRModel::E:
UTIL_THROW_IF2(m_factorsE.empty(),
"TL factor mask for lexical reordering is "
<< "unexpectedly empty");
if(m_configuration->GetCondition() == LRModel::E)
break; // else fall through
case LRModel::F:
UTIL_THROW_IF2(m_factorsF.empty(),
"SL factor mask for lexical reordering is "
<< "unexpectedly empty");
break;
default:
UTIL_THROW2("Unknown conditioning option!");
}
// sanity check: number of default scores
size_t numScores
= m_numScoreComponents
= m_numTuneableComponents
= m_configuration->GetNumScoreComponents();
UTIL_THROW_IF2(m_haveDefaultScores && m_defaultScores.size() != numScores,
"wrong number of default scores (" << m_defaultScores.size()
<< ") for lexicalized reordering model (expected "
<< m_configuration->GetNumScoreComponents() << ")");
m_configuration->ConfigureSparse(sparseArgs, this);
// this->Register();
}
LexicalReordering::
~LexicalReordering()
{ }
void
LexicalReordering::
Load(AllOptions::ptr const& opts)
{
m_options = opts;
typedef LexicalReorderingTable LRTable;
if (m_filePath.size())
m_table.reset(LRTable::LoadAvailable(m_filePath, m_factorsF,
m_factorsE, std::vector<FactorType>()));
}
Scores
LexicalReordering::
GetProb(const Phrase& f, const Phrase& e) const
{
return m_table->GetScore(f, e, Phrase(ARRAY_SIZE_INCR));
}
FFState*
LexicalReordering::
EvaluateWhenApplied(const Hypothesis& hypo,
const FFState* prev_state,
ScoreComponentCollection* out) const
{
VERBOSE(3,"LexicalReordering::Evaluate(const Hypothesis& hypo,...) START" << std::endl);
const LRState *prev = static_cast<const LRState *>(prev_state);
LRState *next_state = prev->Expand(hypo.GetTranslationOption(), hypo.GetInput(), out);
VERBOSE(3,"LexicalReordering::Evaluate(const Hypothesis& hypo,...) END" << std::endl);
return next_state;
}
FFState const*
LexicalReordering::EmptyHypothesisState(const InputType &input) const
{
return m_configuration->CreateLRState(input);
}
bool
LexicalReordering::
IsUseable(const FactorMask &mask) const
{
BOOST_FOREACH(FactorType const& f, m_factorsE) {
if (!mask[f]) return false;
}
return true;
}
void
LexicalReordering::
SetCache(TranslationOption& to) const
{
if (to.GetLexReorderingScores(this)) return;
// Scores were were set already (e.g., by sampling phrase table)
if (m_table) {
Phrase const& sphrase = to.GetInputPath().GetPhrase();
Phrase const& tphrase = to.GetTargetPhrase();
to.CacheLexReorderingScores(*this, this->GetProb(sphrase,tphrase));
} else { // e.g. OOV with Mmsapt
// Scores vals(GetNumScoreComponents(), 0);
// to.CacheLexReorderingScores(*this, vals);
}
}
LRModel const&
LexicalReordering
::GetModel() const
{
return *m_configuration;
}
void
LexicalReordering::
SetCache(TranslationOptionList& tol) const
{
BOOST_FOREACH(TranslationOption* to, tol)
this->SetCache(*to);
}
}
|