File size: 24,639 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
#include <string>
#include <map>
#include <limits>
#include <vector>
#include <boost/unordered_map.hpp>
#include <boost/functional/hash.hpp>
#include "moses/FF/StatefulFeatureFunction.h"
#include "moses/PP/CountsPhraseProperty.h"
#include "moses/TranslationOptionList.h"
#include "moses/TranslationOption.h"
#include "moses/Util.h"
#include "moses/TypeDef.h"
#include "moses/StaticData.h"
#include "moses/Phrase.h"
#include "moses/AlignmentInfo.h"
#include "moses/AlignmentInfoCollection.h"
#include "moses/Word.h"
#include "moses/FactorCollection.h"
#include "Normalizer.h"
#include "Classifier.h"
#include "VWFeatureBase.h"
#include "TabbedSentence.h"
#include "ThreadLocalByFeatureStorage.h"
#include "TrainingLoss.h"
#include "VWTargetSentence.h"
#include "VWState.h"
#include "VW.h"
namespace Moses
{
VW::VW(const std::string &line)
: StatefulFeatureFunction(1, line)
, TLSTargetSentence(this)
, m_train(false)
, m_sentenceStartWord(Word())
{
ReadParameters();
Discriminative::ClassifierFactory *classifierFactory = m_train
? new Discriminative::ClassifierFactory(m_modelPath)
: new Discriminative::ClassifierFactory(m_modelPath, m_vwOptions);
m_tlsClassifier = new TLSClassifier(this, *classifierFactory);
m_tlsFutureScores = new TLSFloatHashMap(this);
m_tlsComputedStateExtensions = new TLSStateExtensions(this);
m_tlsTranslationOptionFeatures = new TLSFeatureVectorMap(this);
m_tlsTargetContextFeatures = new TLSFeatureVectorMap(this);
if (! m_normalizer) {
VERBOSE(1, "VW :: No loss function specified, assuming logistic loss.\n");
m_normalizer = (Discriminative::Normalizer *) new Discriminative::LogisticLossNormalizer();
}
if (! m_trainingLoss) {
VERBOSE(1, "VW :: Using basic 1/0 loss calculation in training.\n");
m_trainingLoss = (TrainingLoss *) new TrainingLossBasic();
}
// create a virtual beginning-of-sentence word with all factors replaced by <S>
const Factor *bosFactor = FactorCollection::Instance().AddFactor(BOS_);
for (size_t i = 0; i < MAX_NUM_FACTORS; i++)
m_sentenceStartWord.SetFactor(i, bosFactor);
}
VW::~VW()
{
delete m_tlsClassifier;
delete m_normalizer;
// TODO delete more stuff
}
FFState* VW::EvaluateWhenApplied(
const Hypothesis& curHypo,
const FFState* prevState,
ScoreComponentCollection* accumulator) const
{
VERBOSE(3, "VW :: Evaluating translation options\n");
const VWState& prevVWState = *static_cast<const VWState *>(prevState);
const std::vector<VWFeatureBase*>& contextFeatures =
VWFeatureBase::GetTargetContextFeatures(GetScoreProducerDescription());
if (contextFeatures.empty()) {
// no target context features => we already evaluated everything in
// EvaluateTranslationOptionListWithSourceContext(). Nothing to do now,
// no state information to track.
return new VWState();
}
size_t spanStart = curHypo.GetTranslationOption().GetStartPos();
size_t spanEnd = curHypo.GetTranslationOption().GetEndPos();
// compute our current key
size_t cacheKey = MakeCacheKey(prevState, spanStart, spanEnd);
boost::unordered_map<size_t, FloatHashMap> &computedStateExtensions
= *m_tlsComputedStateExtensions->GetStored();
if (computedStateExtensions.find(cacheKey) == computedStateExtensions.end()) {
// we have not computed this set of translation options yet
const TranslationOptionList *topts =
curHypo.GetManager().getSntTranslationOptions()->GetTranslationOptionList(spanStart, spanEnd);
const InputType& input = curHypo.GetManager().GetSource();
Discriminative::Classifier &classifier = *m_tlsClassifier->GetStored();
// extract target context features
size_t contextHash = prevVWState.hash();
FeatureVectorMap &contextFeaturesCache = *m_tlsTargetContextFeatures->GetStored();
FeatureVectorMap::const_iterator contextIt = contextFeaturesCache.find(contextHash);
if (contextIt == contextFeaturesCache.end()) {
// we have not extracted features for this context yet
const Phrase &targetContext = prevVWState.GetPhrase();
Discriminative::FeatureVector contextVector;
const AlignmentInfo *alignInfo = TransformAlignmentInfo(curHypo, targetContext.GetSize());
for(size_t i = 0; i < contextFeatures.size(); ++i)
(*contextFeatures[i])(input, targetContext, *alignInfo, classifier, contextVector);
contextFeaturesCache[contextHash] = contextVector;
VERBOSE(3, "VW :: context cache miss\n");
} else {
// context already in cache, simply put feature IDs in the classifier object
classifier.AddLabelIndependentFeatureVector(contextIt->second);
VERBOSE(3, "VW :: context cache hit\n");
}
std::vector<float> losses(topts->size());
for (size_t toptIdx = 0; toptIdx < topts->size(); toptIdx++) {
const TranslationOption *topt = topts->Get(toptIdx);
const TargetPhrase &targetPhrase = topt->GetTargetPhrase();
size_t toptHash = hash_value(*topt);
// start with pre-computed source-context-only VW scores
losses[toptIdx] = m_tlsFutureScores->GetStored()->find(toptHash)->second;
// add all features associated with this translation option
// (pre-computed when evaluated with source context)
const Discriminative::FeatureVector &targetFeatureVector =
m_tlsTranslationOptionFeatures->GetStored()->find(toptHash)->second;
classifier.AddLabelDependentFeatureVector(targetFeatureVector);
// add classifier score with context+target features only to the total loss
losses[toptIdx] += classifier.Predict(MakeTargetLabel(targetPhrase));
}
// normalize classifier scores to get a probability distribution
(*m_normalizer)(losses);
// fill our cache with the results
FloatHashMap &toptScores = computedStateExtensions[cacheKey];
for (size_t toptIdx = 0; toptIdx < topts->size(); toptIdx++) {
const TranslationOption *topt = topts->Get(toptIdx);
size_t toptHash = hash_value(*topt);
toptScores[toptHash] = FloorScore(TransformScore(losses[toptIdx]));
}
VERBOSE(3, "VW :: cache miss\n");
} else {
VERBOSE(3, "VW :: cache hit\n");
}
// now our cache is guaranteed to contain the required score, simply look it up
std::vector<float> newScores(m_numScoreComponents);
size_t toptHash = hash_value(curHypo.GetTranslationOption());
newScores[0] = computedStateExtensions[cacheKey][toptHash];
VERBOSE(3, "VW :: adding score: " << newScores[0] << "\n");
accumulator->PlusEquals(this, newScores);
return new VWState(prevVWState, curHypo);
}
const FFState* VW::EmptyHypothesisState(const InputType &input) const
{
size_t maxContextSize = VWFeatureBase::GetMaximumContextSize(GetScoreProducerDescription());
Phrase initialPhrase;
for (size_t i = 0; i < maxContextSize; i++)
initialPhrase.AddWord(m_sentenceStartWord);
return new VWState(initialPhrase);
}
void VW::EvaluateTranslationOptionListWithSourceContext(const InputType &input
, const TranslationOptionList &translationOptionList) const
{
Discriminative::Classifier &classifier = *m_tlsClassifier->GetStored();
if (translationOptionList.size() == 0)
return; // nothing to do
VERBOSE(3, "VW :: Evaluating translation options\n");
// which feature functions do we use (on the source and target side)
const std::vector<VWFeatureBase*>& sourceFeatures =
VWFeatureBase::GetSourceFeatures(GetScoreProducerDescription());
const std::vector<VWFeatureBase*>& contextFeatures =
VWFeatureBase::GetTargetContextFeatures(GetScoreProducerDescription());
const std::vector<VWFeatureBase*>& targetFeatures =
VWFeatureBase::GetTargetFeatures(GetScoreProducerDescription());
size_t maxContextSize = VWFeatureBase::GetMaximumContextSize(GetScoreProducerDescription());
// only use stateful score computation when needed
bool haveTargetContextFeatures = ! contextFeatures.empty();
const Range &sourceRange = translationOptionList.Get(0)->GetSourceWordsRange();
if (m_train) {
//
// extract features for training the classifier (only call this when using vwtrainer, not in Moses!)
//
// find which topts are correct
std::vector<bool> correct(translationOptionList.size());
std::vector<int> startsAt(translationOptionList.size());
std::set<int> uncoveredStartingPositions;
for (size_t i = 0; i < translationOptionList.size(); i++) {
std::pair<bool, int> isCorrect = IsCorrectTranslationOption(* translationOptionList.Get(i));
correct[i] = isCorrect.first;
startsAt[i] = isCorrect.second;
if (isCorrect.first) {
uncoveredStartingPositions.insert(isCorrect.second);
}
}
// optionally update translation options using leave-one-out
std::vector<bool> keep = (m_leaveOneOut.size() > 0)
? LeaveOneOut(translationOptionList, correct)
: std::vector<bool>(translationOptionList.size(), true);
while (! uncoveredStartingPositions.empty()) {
int currentStart = *uncoveredStartingPositions.begin();
uncoveredStartingPositions.erase(uncoveredStartingPositions.begin());
// check whether we (still) have some correct translation
int firstCorrect = -1;
for (size_t i = 0; i < translationOptionList.size(); i++) {
if (keep[i] && correct[i] && startsAt[i] == currentStart) {
firstCorrect = i;
break;
}
}
// do not train if there are no positive examples
if (firstCorrect == -1) {
VERBOSE(3, "VW :: skipping topt collection, no correct translation for span at current tgt start position\n");
continue;
}
// the first correct topt can be used by some loss functions
const TargetPhrase &correctPhrase = translationOptionList.Get(firstCorrect)->GetTargetPhrase();
// feature extraction *at prediction time* outputs feature hashes which can be cached;
// this is training time, simply store everything in this dummyVector
Discriminative::FeatureVector dummyVector;
// extract source side features
for(size_t i = 0; i < sourceFeatures.size(); ++i)
(*sourceFeatures[i])(input, sourceRange, classifier, dummyVector);
// build target-side context
Phrase targetContext;
for (size_t i = 0; i < maxContextSize; i++)
targetContext.AddWord(m_sentenceStartWord);
const Phrase *targetSent = GetStored()->m_sentence;
// word alignment info shifted by context size
AlignmentInfo contextAlignment = TransformAlignmentInfo(*GetStored()->m_alignment, maxContextSize, currentStart);
if (currentStart > 0)
targetContext.Append(targetSent->GetSubString(Range(0, currentStart - 1)));
// extract target-context features
for(size_t i = 0; i < contextFeatures.size(); ++i)
(*contextFeatures[i])(input, targetContext, contextAlignment, classifier, dummyVector);
// go over topts, extract target side features and train the classifier
for (size_t toptIdx = 0; toptIdx < translationOptionList.size(); toptIdx++) {
// this topt was discarded by leaving one out
if (! keep[toptIdx])
continue;
// extract target-side features for each topt
const TargetPhrase &targetPhrase = translationOptionList.Get(toptIdx)->GetTargetPhrase();
for(size_t i = 0; i < targetFeatures.size(); ++i)
(*targetFeatures[i])(input, targetPhrase, classifier, dummyVector);
bool isCorrect = correct[toptIdx] && startsAt[toptIdx] == currentStart;
float loss = (*m_trainingLoss)(targetPhrase, correctPhrase, isCorrect);
// train classifier on current example
classifier.Train(MakeTargetLabel(targetPhrase), loss);
}
}
} else {
//
// predict using a trained classifier, use this in decoding (=at test time)
//
std::vector<float> losses(translationOptionList.size());
Discriminative::FeatureVector outFeaturesSourceNamespace;
// extract source side features
for(size_t i = 0; i < sourceFeatures.size(); ++i)
(*sourceFeatures[i])(input, sourceRange, classifier, outFeaturesSourceNamespace);
for (size_t toptIdx = 0; toptIdx < translationOptionList.size(); toptIdx++) {
const TranslationOption *topt = translationOptionList.Get(toptIdx);
const TargetPhrase &targetPhrase = topt->GetTargetPhrase();
Discriminative::FeatureVector outFeaturesTargetNamespace;
// extract target-side features for each topt
for(size_t i = 0; i < targetFeatures.size(); ++i)
(*targetFeatures[i])(input, targetPhrase, classifier, outFeaturesTargetNamespace);
// cache the extracted target features (i.e. features associated with given topt)
// for future use at decoding time
size_t toptHash = hash_value(*topt);
m_tlsTranslationOptionFeatures->GetStored()->insert(
std::make_pair(toptHash, outFeaturesTargetNamespace));
// get classifier score
losses[toptIdx] = classifier.Predict(MakeTargetLabel(targetPhrase));
}
// normalize classifier scores to get a probability distribution
std::vector<float> rawLosses = losses;
(*m_normalizer)(losses);
// update scores of topts
for (size_t toptIdx = 0; toptIdx < translationOptionList.size(); toptIdx++) {
TranslationOption *topt = *(translationOptionList.begin() + toptIdx);
if (! haveTargetContextFeatures) {
// no target context features; evaluate the FF now
std::vector<float> newScores(m_numScoreComponents);
newScores[0] = FloorScore(TransformScore(losses[toptIdx]));
ScoreComponentCollection &scoreBreakDown = topt->GetScoreBreakdown();
scoreBreakDown.PlusEquals(this, newScores);
topt->UpdateScore();
} else {
// We have target context features => this is just a partial score,
// do not add it to the score component collection.
size_t toptHash = hash_value(*topt);
// Subtract the score contribution of target-only features, otherwise it would
// be included twice.
Discriminative::FeatureVector emptySource;
const Discriminative::FeatureVector &targetFeatureVector =
m_tlsTranslationOptionFeatures->GetStored()->find(toptHash)->second;
classifier.AddLabelIndependentFeatureVector(emptySource);
classifier.AddLabelDependentFeatureVector(targetFeatureVector);
float targetOnlyLoss = classifier.Predict(VW_DUMMY_LABEL);
float futureScore = rawLosses[toptIdx] - targetOnlyLoss;
m_tlsFutureScores->GetStored()->insert(std::make_pair(toptHash, futureScore));
}
}
}
}
void VW::SetParameter(const std::string& key, const std::string& value)
{
if (key == "train") {
m_train = Scan<bool>(value);
} else if (key == "path") {
m_modelPath = value;
} else if (key == "vw-options") {
m_vwOptions = value;
} else if (key == "leave-one-out-from") {
m_leaveOneOut = value;
} else if (key == "training-loss") {
// which type of loss to use for training
if (value == "basic") {
m_trainingLoss = (TrainingLoss *) new TrainingLossBasic();
} else if (value == "bleu") {
m_trainingLoss = (TrainingLoss *) new TrainingLossBLEU();
} else {
UTIL_THROW2("Unknown training loss type:" << value);
}
} else if (key == "loss") {
// which normalizer to use (theoretically depends on the loss function used for training the
// classifier (squared/logistic/hinge/...), hence the name "loss"
if (value == "logistic") {
m_normalizer = (Discriminative::Normalizer *) new Discriminative::LogisticLossNormalizer();
} else if (value == "squared") {
m_normalizer = (Discriminative::Normalizer *) new Discriminative::SquaredLossNormalizer();
} else {
UTIL_THROW2("Unknown loss type:" << value);
}
} else {
StatefulFeatureFunction::SetParameter(key, value);
}
}
void VW::InitializeForInput(ttasksptr const& ttask)
{
// do not keep future cost estimates across sentences!
m_tlsFutureScores->GetStored()->clear();
// invalidate our caches after each sentence
m_tlsComputedStateExtensions->GetStored()->clear();
// it's not certain that we should clear these caches; we do it
// because they shouldn't be allowed to grow indefinitely large but
// target contexts and translation options will have identical features
// the next time we extract them...
m_tlsTargetContextFeatures->GetStored()->clear();
m_tlsTranslationOptionFeatures->GetStored()->clear();
InputType const& source = *(ttask->GetSource().get());
// tabbed sentence is assumed only in training
if (! m_train)
return;
UTIL_THROW_IF2(source.GetType() != TabbedSentenceInput,
"This feature function requires the TabbedSentence input type");
const TabbedSentence& tabbedSentence = static_cast<const TabbedSentence&>(source);
UTIL_THROW_IF2(tabbedSentence.GetColumns().size() < 2,
"TabbedSentence must contain target<tab>alignment");
// target sentence represented as a phrase
Phrase *target = new Phrase();
target->CreateFromString(
Output
, StaticData::Instance().options()->output.factor_order
, tabbedSentence.GetColumns()[0]
, NULL);
// word alignment between source and target sentence
// we don't store alignment info in AlignmentInfoCollection because we keep alignments of whole
// sentences, not phrases
AlignmentInfo *alignment = new AlignmentInfo(tabbedSentence.GetColumns()[1]);
VWTargetSentence &targetSent = *GetStored();
targetSent.Clear();
targetSent.m_sentence = target;
targetSent.m_alignment = alignment;
// pre-compute max- and min- aligned points for faster translation option checking
targetSent.SetConstraints(source.GetSize());
}
/*************************************************************************************
* private methods
************************************************************************************/
const AlignmentInfo *VW::TransformAlignmentInfo(const Hypothesis &curHypo, size_t contextSize) const
{
std::set<std::pair<size_t, size_t> > alignmentPoints;
const Hypothesis *contextHypo = curHypo.GetPrevHypo();
int idxInContext = contextSize - 1;
int processedWordsInHypo = 0;
while (idxInContext >= 0 && contextHypo) {
int idxInHypo = contextHypo->GetCurrTargetLength() - 1 - processedWordsInHypo;
if (idxInHypo >= 0) {
const AlignmentInfo &hypoAlign = contextHypo->GetCurrTargetPhrase().GetAlignTerm();
std::set<size_t> alignedToTgt = hypoAlign.GetAlignmentsForTarget(idxInHypo);
size_t srcOffset = contextHypo->GetCurrSourceWordsRange().GetStartPos();
BOOST_FOREACH(size_t srcIdx, alignedToTgt) {
alignmentPoints.insert(std::make_pair(srcOffset + srcIdx, idxInContext));
}
processedWordsInHypo++;
idxInContext--;
} else {
processedWordsInHypo = 0;
contextHypo = contextHypo->GetPrevHypo();
}
}
return AlignmentInfoCollection::Instance().Add(alignmentPoints);
}
AlignmentInfo VW::TransformAlignmentInfo(const AlignmentInfo &alignInfo, size_t contextSize, int currentStart) const
{
std::set<std::pair<size_t, size_t> > alignmentPoints;
for (int i = std::max(0, currentStart - (int)contextSize); i < currentStart; i++) {
std::set<size_t> alignedToTgt = alignInfo.GetAlignmentsForTarget(i);
BOOST_FOREACH(size_t srcIdx, alignedToTgt) {
alignmentPoints.insert(std::make_pair(srcIdx, i + contextSize));
}
}
return AlignmentInfo(alignmentPoints);
}
std::pair<bool, int> VW::IsCorrectTranslationOption(const TranslationOption &topt) const
{
//std::cerr << topt.GetSourceWordsRange() << std::endl;
int sourceStart = topt.GetSourceWordsRange().GetStartPos();
int sourceEnd = topt.GetSourceWordsRange().GetEndPos();
const VWTargetSentence &targetSentence = *GetStored();
// [targetStart, targetEnd] spans aligned target words
int targetStart = targetSentence.m_sentence->GetSize();
int targetEnd = -1;
// get the left-most and right-most alignment point within source span
for(int i = sourceStart; i <= sourceEnd; ++i) {
if(targetSentence.m_sourceConstraints[i].IsSet()) {
if(targetStart > targetSentence.m_sourceConstraints[i].GetMin())
targetStart = targetSentence.m_sourceConstraints[i].GetMin();
if(targetEnd < targetSentence.m_sourceConstraints[i].GetMax())
targetEnd = targetSentence.m_sourceConstraints[i].GetMax();
}
}
// there was no alignment
if(targetEnd == -1)
return std::make_pair(false, -1);
//std::cerr << "Shorter: " << targetStart << " " << targetEnd << std::endl;
// [targetStart2, targetEnd2] spans unaligned words left and right of [targetStart, targetEnd]
int targetStart2 = targetStart;
for(int i = targetStart2; i >= 0 && !targetSentence.m_targetConstraints[i].IsSet(); --i)
targetStart2 = i;
int targetEnd2 = targetEnd;
for(int i = targetEnd2;
i < targetSentence.m_sentence->GetSize() && !targetSentence.m_targetConstraints[i].IsSet();
++i)
targetEnd2 = i;
//std::cerr << "Longer: " << targetStart2 << " " << targetEnd2 << std::endl;
const TargetPhrase &tphrase = topt.GetTargetPhrase();
//std::cerr << tphrase << std::endl;
// if target phrase is shorter than inner span return false
if(tphrase.GetSize() < targetEnd - targetStart + 1)
return std::make_pair(false, -1);
// if target phrase is longer than outer span return false
if(tphrase.GetSize() > targetEnd2 - targetStart2 + 1)
return std::make_pair(false, -1);
// for each possible starting point
for(int tempStart = targetStart2; tempStart <= targetStart; tempStart++) {
bool found = true;
// check if the target phrase is within longer span
for(int i = tempStart; i <= targetEnd2 && i < tphrase.GetSize() + tempStart; ++i) {
if(tphrase.GetWord(i - tempStart) != targetSentence.m_sentence->GetWord(i)) {
found = false;
break;
}
}
// return true if there was a match
if(found) {
//std::cerr << "Found" << std::endl;
return std::make_pair(true, tempStart);
}
}
return std::make_pair(false, -1);
}
std::vector<bool> VW::LeaveOneOut(const TranslationOptionList &topts, const std::vector<bool> &correct) const
{
UTIL_THROW_IF2(m_leaveOneOut.size() == 0 || ! m_train, "LeaveOneOut called in wrong setting!");
float sourceRawCount = 0.0;
const float ONE = 1.0001; // I don't understand floating point numbers
std::vector<bool> keepOpt;
for (size_t i = 0; i < topts.size(); i++) {
TranslationOption *topt = *(topts.begin() + i);
const TargetPhrase &targetPhrase = topt->GetTargetPhrase();
// extract raw counts from phrase-table property
const CountsPhraseProperty *property =
static_cast<const CountsPhraseProperty *>(targetPhrase.GetProperty("Counts"));
if (! property) {
VERBOSE(2, "VW :: Counts not found for topt! Is this an OOV?\n");
// keep all translation opts without updating, this is either OOV or bad usage...
keepOpt.assign(topts.size(), true);
return keepOpt;
}
if (sourceRawCount == 0.0) {
sourceRawCount = property->GetSourceMarginal() - ONE; // discount one occurrence of the source phrase
if (sourceRawCount <= 0) {
// no translation options survived, source phrase was a singleton
keepOpt.assign(topts.size(), false);
return keepOpt;
}
}
float discount = correct[i] ? ONE : 0.0;
float target = property->GetTargetMarginal() - discount;
float joint = property->GetJointCount() - discount;
if (discount != 0.0) VERBOSE(3, "VW :: leaving one out!\n");
if (joint > 0) {
// topt survived leaving one out, update its scores
const FeatureFunction *feature = &FindFeatureFunction(m_leaveOneOut);
std::vector<float> scores = targetPhrase.GetScoreBreakdown().GetScoresForProducer(feature);
UTIL_THROW_IF2(scores.size() != 4, "Unexpected number of scores in feature " << m_leaveOneOut);
scores[0] = TransformScore(joint / target); // P(f|e)
scores[2] = TransformScore(joint / sourceRawCount); // P(e|f)
ScoreComponentCollection &scoreBreakDown = topt->GetScoreBreakdown();
scoreBreakDown.Assign(feature, scores);
topt->UpdateScore();
keepOpt.push_back(true);
} else {
// they only occurred together once, discard topt
VERBOSE(2, "VW :: discarded topt when leaving one out\n");
keepOpt.push_back(false);
}
}
return keepOpt;
}
} // namespace Moses
|