File size: 10,174 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "lm/binary_format.hh"
#include "lm/enumerate_vocab.hh"
#include "lm/left.hh"
#include "lm/model.hh"
#include "moses/FF/FFState.h"
#include "moses/Hypothesis.h"
#include "moses/Phrase.h"
#include "moses/LM/Ken.h"
#include "moses/LM/Backward.h"
#include "util/exception.hh"
//#include "moses/Util.h"
//#include "moses/StaticData.h"
//#include <iostream>
namespace Moses
{
/** Constructs a new backward language model. */
// TODO(lane): load_method instead of lazy bool
template <class Model> BackwardLanguageModel<Model>::BackwardLanguageModel(const std::string &line, const std::string &file, FactorType factorType, bool lazy) : LanguageModelKen<Model>(line,file,factorType, lazy ? util::LAZY : util::POPULATE_OR_READ)
{
//
// This space intentionally left blank
//
}
/**
* Constructs an empty backward language model state.
*
* This state will correspond with a translation hypothesis
* where no source words have been translated.
*
* In a forward language model, the language model state of an empty hypothesis
* would store the beginning of sentence marker <s>.
*
* Because this is a backward language model, the language model state returned by this method
* instead stores the end of sentence marker </s>.
*/
template <class Model> const FFState *BackwardLanguageModel<Model>::EmptyHypothesisState(const InputType &/*input*/) const
{
BackwardLMState *ret = new BackwardLMState();
lm::ngram::RuleScore<Model> ruleScore(*m_ngram, ret->state);
ruleScore.Terminal(m_ngram->GetVocabulary().EndSentence());
// float score =
ruleScore.Finish();
// VERBOSE(1, "BackwardLM EmptyHypothesisState has score " << score);
return ret;
}
/*
template <class Model> double BackwardLanguageModel<Model>::Score(FFState *ffState) {
BackwardLMState *lmState = static_cast< BackwardLMState* >(ffState);
lm::ngram::ChartState &state = lmState->state;
lm::ngram::RuleScore<Model> ruleScore(*m_ngram, lmState);
return ruleScore.Finish();
}
*/
/**
* Pre-calculate the n-gram probabilities for the words in the specified phrase.
*
* Note that when this method is called, we do not have access to the context
* in which this phrase will eventually be applied.
*
* In other words, we know what words are in this phrase,
* but we do not know what words will come before or after this phrase.
*
* The parameters fullScore, ngramScore, and oovCount are all output parameters.
*
* The value stored in oovCount is the number of words in the phrase
* that are not in the language model's vocabulary.
*
* The sum of the ngram scores for all words in this phrase are stored in fullScore.
*
* The value stored in ngramScore is similar, but only full-order ngram scores are included.
*
* This is best shown by example:
*
* Assume a trigram backward language model and a phrase "a b c d e f g"
*
* fullScore would represent the sum of the logprob scores for the following values:
*
* p(g)
* p(f | g)
* p(e | g f)
* p(d | f e)
* p(c | e d)
* p(b | d c)
* p(a | c b)
*
* ngramScore would represent the sum of the logprob scores for the following values:
*
* p(g)
* p(f | g)
* p(e | g f)
* p(d | f e)
* p(c | e d)
* p(b | d c)
* p(a | c b)
*/
template <class Model> void BackwardLanguageModel<Model>::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
{
fullScore = 0;
ngramScore = 0;
oovCount = 0;
if (!phrase.GetSize()) return;
lm::ngram::ChartState discarded_sadly;
lm::ngram::RuleScore<Model> scorer(*m_ngram, discarded_sadly);
UTIL_THROW_IF2(m_beginSentenceFactor == phrase.GetWord(0).GetFactor(m_factorType),
"BackwardLanguageModel does not currently support rules that include <s>"
);
float before_boundary = 0.0f;
int lastWord = phrase.GetSize() - 1;
int ngramBoundary = m_ngram->Order() - 1;
int boundary = ( lastWord < ngramBoundary ) ? 0 : ngramBoundary;
int position;
for (position = lastWord; position >= 0; position-=1) {
const Word &word = phrase.GetWord(position);
UTIL_THROW_IF2(word.IsNonTerminal(),
"BackwardLanguageModel does not currently support rules that include non-terminals "
);
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
if (!index) ++oovCount;
if (position==boundary) {
before_boundary = scorer.Finish();
}
}
fullScore = scorer.Finish();
ngramScore = TransformLMScore(fullScore - before_boundary);
fullScore = TransformLMScore(fullScore);
}
/**
* Calculate the ngram probabilities for the words at the beginning
* (and under some circumstances, also at the end)
* of the phrase represented by the provided hypothesis.
*
* Additionally, calculate a new language model state.
*
* This is best shown by example:
*
* Assume a trigram language model.
*
* Assume the previous phrase was "a b c d e f g",
* which means the previous language model state is "g f".
*
* When the phrase corresponding to "a b c d e f g" was previously processed by CalcScore
* the following full-order ngrams would have been calculated:
*
* p(a | c b)
* p(b | d c)
* p(c | e d)
* p(d | f e)
* p(e | g f)
*
* The following less-than-full-order ngrams would also have been calculated by CalcScore:
*
* p(f | g)
* p(g)
*
* In this method, we now have access to additional context which may allow
* us to compute the full-order ngrams for f and g.
*
* Assume the new provided hypothesis contains the new phrase "h i j k"
*
* Given these assumptions, this method is responsible
* for calculating the scores for the following:
*
* p(f | h g)
* p(g | i h)
*
* This method must also calculate and return a new language model state.
*
* In this example, the returned language model state would be "k j"
*
* If the provided hypothesis represents the end of a completed translation
* (all source words have been translated)
* then this method is additionally responsible for calculating the following:
*
* p(j | <s> k)
* p(k | <s>)
*
*/
template <class Model> FFState *BackwardLanguageModel<Model>::Evaluate(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
{
// If the current hypothesis contains zero target words
if (!hypo.GetCurrTargetLength()) {
// reuse and return the previous state
std::auto_ptr<BackwardLMState> ret(new BackwardLMState());
ret->state = static_cast<const BackwardLMState&>(*ps).state;
return ret.release();
} else {
float returnedScore;
FFState *returnedState = this->Evaluate(hypo.GetCurrTargetPhrase(), ps, returnedScore);
out->PlusEquals(this, returnedScore);
return returnedState;
}
}
template <class Model> FFState *BackwardLanguageModel<Model>::Evaluate(const Phrase &phrase, const FFState *ps, float &returnedScore) const
{
returnedScore = 0.0f;
const lm::ngram::ChartState &previous = static_cast<const BackwardLMState&>(*ps).state;
std::auto_ptr<BackwardLMState> ret(new BackwardLMState());
lm::ngram::RuleScore<Model> scorer(*m_ngram, ret->state);
int ngramBoundary = m_ngram->Order() - 1;
int lastWord = phrase.GetSize() - 1;
// Get scores for words at the end of the previous phrase
// that are now adjacent to words at the the beginning of this phrase
for (int position=std::min( lastWord, ngramBoundary - 1); position >= 0; position-=1) {
const Word &word = phrase.GetWord(position);
UTIL_THROW_IF2(word.IsNonTerminal(),
"BackwardLanguageModel does not currently support rules that include non-terminals "
);
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
}
scorer.NonTerminal(previous);
returnedScore = scorer.Finish();
/*
out->PlusEquals(this, score);
UTIL_THROW_IF(
(1==1),
util::Exception,
"This method (BackwardLanguageModel<Model>::Evaluate) is not yet fully implemented"
);
*/
return ret.release();
}
LanguageModel *ConstructBackwardLM(const std::string &line, const std::string &file, FactorType factorType, bool lazy)
{
lm::ngram::ModelType model_type;
if (lm::ngram::RecognizeBinary(file.c_str(), model_type)) {
switch(model_type) {
case lm::ngram::PROBING:
return new BackwardLanguageModel<lm::ngram::ProbingModel>(line, file, factorType, lazy);
case lm::ngram::REST_PROBING:
return new BackwardLanguageModel<lm::ngram::RestProbingModel>(line, file, factorType, lazy);
case lm::ngram::TRIE:
return new BackwardLanguageModel<lm::ngram::TrieModel>(line, file, factorType, lazy);
case lm::ngram::QUANT_TRIE:
return new BackwardLanguageModel<lm::ngram::QuantTrieModel>(line, file, factorType, lazy);
case lm::ngram::ARRAY_TRIE:
return new BackwardLanguageModel<lm::ngram::ArrayTrieModel>(line, file, factorType, lazy);
case lm::ngram::QUANT_ARRAY_TRIE:
return new BackwardLanguageModel<lm::ngram::QuantArrayTrieModel>(line, file, factorType, lazy);
default:
UTIL_THROW2("Unrecognized kenlm model type " << model_type);
}
} else {
return new BackwardLanguageModel<lm::ngram::ProbingModel>(line, file, factorType, lazy);
}
}
} // namespace Moses
|