File size: 14,010 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
// $Id$
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <limits>
#include <iostream>
#include <fstream>
#include "dictionary.h"
#include "n_gram.h"
#include "lmContainer.h"
using namespace irstlm;
#include "IRST.h"
#include "moses/LM/PointerState.h"
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/FactorCollection.h"
#include "moses/Phrase.h"
#include "moses/InputFileStream.h"
#include "moses/StaticData.h"
#include "moses/TranslationTask.h"
using namespace std;
namespace Moses
{
class IRSTLMState : public PointerState
{
public:
IRSTLMState():PointerState(NULL) {}
IRSTLMState(const void* lms):PointerState(lms) {}
IRSTLMState(const IRSTLMState& copy_from):PointerState(copy_from.lmstate) {}
IRSTLMState& operator=( const IRSTLMState& rhs ) {
lmstate = rhs.lmstate;
return *this;
}
const void* GetState() const {
return lmstate;
}
};
LanguageModelIRST::LanguageModelIRST(const std::string &line)
:LanguageModelSingleFactor(line)
,m_lmtb_dub(0), m_lmtb_size(0)
{
const StaticData &staticData = StaticData::Instance();
int threadCount = staticData.ThreadCount();
if (threadCount != 1) {
throw runtime_error("Error: " + SPrint(threadCount) + " number of threads specified but IRST LM is not threadsafe.");
}
ReadParameters();
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_lmtb_dub:|" << m_lmtb_dub << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_filePath:|" << m_filePath << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_factorType:|" << m_factorType << "|" << std::endl);
VERBOSE(4, GetScoreProducerDescription() << " LanguageModelIRST::LanguageModelIRST() m_lmtb_size:|" << m_lmtb_size << "|" << std::endl);
}
LanguageModelIRST::~LanguageModelIRST()
{
#ifndef WIN32
TRACE_ERR( "reset mmap\n");
if (m_lmtb) m_lmtb->reset_mmap();
#endif
delete m_lmtb;
}
bool LanguageModelIRST::IsUseable(const FactorMask &mask) const
{
bool ret = mask[m_factorType];
return ret;
}
void LanguageModelIRST::Load(AllOptions::ptr const& opts)
{
FactorCollection &factorCollection = FactorCollection::Instance();
m_lmtb = m_lmtb->CreateLanguageModel(m_filePath);
if (m_lmtb_size > 0) m_lmtb->setMaxLoadedLevel(m_lmtb_size);
m_lmtb->load(m_filePath);
d=m_lmtb->getDict();
d->incflag(1);
m_nGramOrder = m_lmtb_size = m_lmtb->maxlevel();
// LM can be ok, just outputs warnings
// Mauro: in the original, the following two instructions are wrongly switched:
m_unknownId = d->oovcode(); // at the level of micro tags
m_empty = -1; // code for an empty position
CreateFactors(factorCollection);
VERBOSE(1, GetScoreProducerDescription() << " LanguageModelIRST::Load() m_unknownId=" << m_unknownId << std::endl);
//install caches to save time (only if PS_CACHE_ENABLE is defined through compilation flags)
m_lmtb->init_caches(m_lmtb_size>2?m_lmtb_size-1:2);
if (m_lmtb_dub > 0) m_lmtb->setlogOOVpenalty(m_lmtb_dub);
}
void LanguageModelIRST::CreateFactors(FactorCollection &factorCollection)
{
// add factors which have srilm id
// code copied & paste from SRI LM class. should do template function
std::map<size_t, int> lmIdMap;
size_t maxFactorId = 0; // to create lookup vector later on
m_empty = -1; // code for an empty position
dict_entry *entry;
dictionary_iter iter(d); // at the level of micro tags
while ( (entry = iter.next()) != NULL) {
size_t factorId = factorCollection.AddFactor(Output, m_factorType, entry->word)->GetId();
lmIdMap[factorId] = entry->code;
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
}
size_t factorId;
m_sentenceStart = factorCollection.AddFactor(Output, m_factorType, BOS_);
factorId = m_sentenceStart->GetId();
const std::string bs = BOS_;
const std::string es = EOS_;
m_lmtb_sentenceStart=lmIdMap[factorId] = GetLmID(BOS_);
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceStartWord[m_factorType] = m_sentenceStart;
m_sentenceEnd = factorCollection.AddFactor(Output, m_factorType, EOS_);
factorId = m_sentenceEnd->GetId();
m_lmtb_sentenceEnd=lmIdMap[factorId] = GetLmID(EOS_);
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceEndWord[m_factorType] = m_sentenceEnd;
// add to lookup vector in object
m_lmIdLookup.resize(maxFactorId+1);
fill(m_lmIdLookup.begin(), m_lmIdLookup.end(), m_empty);
map<size_t, int>::iterator iterMap;
for (iterMap = lmIdMap.begin() ; iterMap != lmIdMap.end() ; ++iterMap) {
m_lmIdLookup[iterMap->first] = iterMap->second;
}
}
int LanguageModelIRST::GetLmID( const std::string &str ) const
{
return d->encode( str.c_str() ); // at the level of micro tags
}
int LanguageModelIRST::GetLmID( const Word &word ) const
{
return GetLmID( word.GetFactor(m_factorType) );
}
int LanguageModelIRST::GetLmID( const Factor *factor ) const
{
size_t factorId = factor->GetId();
if ((factorId >= m_lmIdLookup.size()) || (m_lmIdLookup[factorId] == m_empty)) {
if (d->incflag()==1) {
std::string s = factor->GetString().as_string();
int code = d->encode(s.c_str());
//////////
///poiche' non c'e' distinzione tra i factorIDs delle parole sorgenti
///e delle parole target in Moses, puo' accadere che una parola target
///di cui non sia stato ancora calcolato il suo codice target abbia
///comunque un factorID noto (e quindi minore di m_lmIdLookup.size())
///E' necessario dunque identificare questi casi di indeterminatezza
///del codice target. Attualmente, questo controllo e' stato implementato
///impostando a m_empty tutti i termini che non hanno ancora
//ricevuto un codice target effettivo
///////////
///OLD PROBLEM - SOLVED
////////////
/// IL PPROBLEMA ERA QUI
/// m_lmIdLookup.push_back(code);
/// PERCHE' USANDO PUSH_BACK IN REALTA' INSEREVIVAMO L'ELEMENTO NUOVO
/// IN POSIZIONE (factorID-1) invece che in posizione factrID dove dopo andiamo a leggerlo (vedi caso C
/// Cosi' funziona ....
/// ho un dubbio su cosa c'e' nelle prime posizioni di m_lmIdLookup
/// quindi
/// e scopro che rimane vuota una entry ogni due
/// perche' factorID cresce di due in due (perche' codifica sia source che target) "vuota" la posizione (factorID-1)
/// non da problemi di correttezza, ma solo di "spreco" di memoria
/// potremmo sostituirerendere m_lmIdLookup una std:map invece che un std::vector,
/// ma si perde in efficienza nell'accesso perche' non e' piu' possibile quello random dei vettori
/// a te la scelta!!!!
////////////////
if (factorId >= m_lmIdLookup.size()) {
//resize and fill with m_empty
//increment the array more than needed to avoid too many resizing operation.
m_lmIdLookup.resize(factorId+10, m_empty);
}
//insert new code
m_lmIdLookup[factorId] = code;
return code;
} else {
return m_unknownId;
}
} else {
return m_lmIdLookup[factorId];
}
}
const FFState* LanguageModelIRST::EmptyHypothesisState(const InputType &/*input*/) const
{
std::auto_ptr<IRSTLMState> ret(new IRSTLMState());
return ret.release();
}
void LanguageModelIRST::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
{
fullScore = 0;
ngramScore = 0;
oovCount = 0;
if ( !phrase.GetSize() ) return;
int _min = min(m_lmtb_size - 1, (int) phrase.GetSize());
int codes[m_lmtb_size];
int idx = 0;
codes[idx] = m_lmtb_sentenceStart;
++idx;
int position = 0;
char* msp = NULL;
float before_boundary = 0.0;
for (; position < _min; ++position) {
codes[idx] = GetLmID(phrase.GetWord(position));
if (codes[idx] == m_unknownId) ++oovCount;
before_boundary += m_lmtb->clprob(codes,idx+1,NULL,NULL,&msp);
++idx;
}
ngramScore = 0.0;
int end_loop = (int) phrase.GetSize();
for (; position < end_loop; ++position) {
for (idx = 1; idx < m_lmtb_size; ++idx) {
codes[idx-1] = codes[idx];
}
codes[idx-1] = GetLmID(phrase.GetWord(position));
if (codes[idx-1] == m_unknownId) ++oovCount;
ngramScore += m_lmtb->clprob(codes,idx,NULL,NULL,&msp);
}
before_boundary = TransformLMScore(before_boundary);
ngramScore = TransformLMScore(ngramScore);
fullScore = ngramScore + before_boundary;
}
FFState* LanguageModelIRST::EvaluateWhenApplied(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
{
if (!hypo.GetCurrTargetLength()) {
std::auto_ptr<IRSTLMState> ret(new IRSTLMState(ps));
return ret.release();
}
//[begin, end) in STL-like fashion.
const int begin = (const int) hypo.GetCurrTargetWordsRange().GetStartPos();
const int end = (const int) hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
const int adjust_end = (const int) std::min(end, begin + m_lmtb_size - 1);
//set up context
//fill the farthest positions with sentenceStart symbols, if "empty" positions are available
//so that the vector looks like = "<s> <s> context_word context_word" for a two-word context and a LM of order 5
int codes[m_lmtb_size];
int idx=m_lmtb_size-1;
int position = (const int) begin;
while (position >= 0) {
codes[idx] = GetLmID(hypo.GetWord(position));
--idx;
--position;
}
while (idx>=0) {
codes[idx] = m_lmtb_sentenceStart;
--idx;
}
char* msp = NULL;
float score = m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
position = (const int) begin+1;
while (position < adjust_end) {
for (idx=1; idx<m_lmtb_size; idx++) {
codes[idx-1] = codes[idx];
}
codes[idx-1] = GetLmID(hypo.GetWord(position));
score += m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
++position;
}
//adding probability of having sentenceEnd symbol, after this phrase;
//this could happen only when all source words are covered
if (hypo.IsSourceCompleted()) {
idx=m_lmtb_size-1;
codes[idx] = m_lmtb_sentenceEnd;
--idx;
position = (const int) end - 1;
while (position >= 0 && idx >= 0) {
codes[idx] = GetLmID(hypo.GetWord(position));
--idx;
--position;
}
while (idx>=0) {
codes[idx] = m_lmtb_sentenceStart;
--idx;
}
score += m_lmtb->clprob(codes,m_lmtb_size,NULL,NULL,&msp);
} else {
// need to set the LM state
if (adjust_end < end) { //the LMstate of this target phrase refers to the last m_lmtb_size-1 words
position = (const int) end - 1;
for (idx=m_lmtb_size-1; idx>0; --idx) {
codes[idx] = GetLmID(hypo.GetWord(position));
}
codes[idx] = m_lmtb_sentenceStart;
msp = (char *) m_lmtb->cmaxsuffptr(codes,m_lmtb_size);
}
}
score = TransformLMScore(score);
out->PlusEquals(this, score);
std::auto_ptr<IRSTLMState> ret(new IRSTLMState(msp));
return ret.release();
}
LMResult LanguageModelIRST::GetValue(const vector<const Word*> &contextFactor, State* finalState) const
{
// set up context
size_t count = contextFactor.size();
if (count < 0) {
cerr << "ERROR count < 0\n";
exit(100);
};
// set up context
int codes[MAX_NGRAM_SIZE];
size_t idx=0;
//fill the farthest positions with at most ONE sentenceEnd symbol and at most ONE sentenceEnd symbol, if "empty" positions are available
//so that the vector looks like = "</s> <s> context_word context_word" for a two-word context and a LM of order 5
if (count < (size_t) (m_lmtb_size-1)) codes[idx++] = m_lmtb_sentenceEnd;
if (count < (size_t) m_lmtb_size) codes[idx++] = m_lmtb_sentenceStart;
for (size_t i = 0 ; i < count ; i++) {
codes[idx] = GetLmID(*contextFactor[i]);
++idx;
}
LMResult result;
result.unknown = (codes[idx - 1] == m_unknownId);
char* msp = NULL;
result.score = m_lmtb->clprob(codes,idx,NULL,NULL,&msp);
if (finalState) *finalState=(State *) msp;
result.score = TransformLMScore(result.score);
return result;
}
bool LMCacheCleanup(const int sentences_done, const size_t m_lmcache_cleanup_threshold)
{
if (sentences_done==-1) return true;
if (m_lmcache_cleanup_threshold)
if (sentences_done % m_lmcache_cleanup_threshold == 0)
return true;
return false;
}
void LanguageModelIRST::InitializeForInput(ttasksptr const& ttask)
{
//nothing to do
#ifdef TRACE_CACHE
m_lmtb->sentence_id++;
#endif
}
void LanguageModelIRST::CleanUpAfterSentenceProcessing(const InputType& source)
{
const StaticData &staticData = StaticData::Instance();
static int sentenceCount = 0;
sentenceCount++;
size_t lmcache_cleanup_threshold = staticData.GetLMCacheCleanupThreshold();
if (LMCacheCleanup(sentenceCount, lmcache_cleanup_threshold)) {
TRACE_ERR( "reset caches\n");
m_lmtb->reset_caches();
}
}
void LanguageModelIRST::SetParameter(const std::string& key, const std::string& value)
{
if (key == "dub") {
m_lmtb_dub = Scan<unsigned int>(value);
} else {
LanguageModelSingleFactor::SetParameter(key, value);
}
m_lmtb_size = m_nGramOrder;
}
}
|