File size: 17,711 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include <cstring>
#include <iostream>
#include <memory>
#include <cstdlib>
#include <boost/shared_ptr.hpp>
#include <boost/lexical_cast.hpp>
#include "lm/binary_format.hh"
#include "lm/enumerate_vocab.hh"
#include "lm/left.hh"
#include "lm/model.hh"
#include "util/exception.hh"
#include "util/tokenize_piece.hh"
#include "util/string_stream.hh"
#include "Ken.h"
#include "Base.h"
#include "moses/FF/FFState.h"
#include "moses/TypeDef.h"
#include "moses/Util.h"
#include "moses/FactorCollection.h"
#include "moses/Phrase.h"
#include "moses/InputFileStream.h"
#include "moses/StaticData.h"
#include "moses/ChartHypothesis.h"
#include "moses/Incremental.h"
#include "moses/Syntax/SHyperedge.h"
#include "moses/Syntax/SVertex.h"
using namespace std;
namespace Moses
{
namespace
{
struct KenLMState : public FFState {
lm::ngram::State state;
virtual size_t hash() const {
size_t ret = hash_value(state);
return ret;
}
virtual bool operator==(const FFState& o) const {
const KenLMState &other = static_cast<const KenLMState &>(o);
bool ret = state == other.state;
return ret;
}
};
class MappingBuilder : public lm::EnumerateVocab
{
public:
MappingBuilder(FactorCollection &factorCollection, std::vector<lm::WordIndex> &mapping)
: m_factorCollection(factorCollection), m_mapping(mapping) {}
void Add(lm::WordIndex index, const StringPiece &str) {
std::size_t factorId = m_factorCollection.AddFactor(str)->GetId();
if (m_mapping.size() <= factorId) {
// 0 is <unk> :-)
m_mapping.resize(factorId + 1);
}
m_mapping[factorId] = index;
}
private:
FactorCollection &m_factorCollection;
std::vector<lm::WordIndex> &m_mapping;
};
} // namespace
template <class Model> void LanguageModelKen<Model>::LoadModel(const std::string &file, util::LoadMethod load_method)
{
m_lmIdLookup.clear();
lm::ngram::Config config;
if(this->m_verbosity >= 1) {
config.messages = &std::cerr;
} else {
config.messages = NULL;
}
FactorCollection &collection = FactorCollection::Instance();
MappingBuilder builder(collection, m_lmIdLookup);
config.enumerate_vocab = &builder;
config.load_method = load_method;
m_ngram.reset(new Model(file.c_str(), config));
VERBOSE(2, "LanguageModelKen " << m_description << " reset to " << file << "\n");
}
template <class Model> LanguageModelKen<Model>::LanguageModelKen(const std::string &line, const std::string &file, FactorType factorType, util::LoadMethod load_method)
:LanguageModel(line)
,m_beginSentenceFactor(FactorCollection::Instance().AddFactor(BOS_))
,m_factorType(factorType)
{
ReadParameters();
LoadModel(file, load_method);
}
template <class Model> LanguageModelKen<Model>::LanguageModelKen()
:LanguageModel("KENLM")
,m_beginSentenceFactor(FactorCollection::Instance().AddFactor(BOS_))
,m_factorType(0)
{
ReadParameters();
}
template <class Model> LanguageModelKen<Model>::LanguageModelKen(const LanguageModelKen<Model> ©_from)
:LanguageModel(copy_from.GetArgLine()),
m_ngram(copy_from.m_ngram),
// TODO: don't copy this.
m_beginSentenceFactor(copy_from.m_beginSentenceFactor),
m_factorType(copy_from.m_factorType),
m_lmIdLookup(copy_from.m_lmIdLookup)
{
}
template <class Model> const FFState * LanguageModelKen<Model>::EmptyHypothesisState(const InputType &/*input*/) const
{
KenLMState *ret = new KenLMState();
ret->state = m_ngram->BeginSentenceState();
return ret;
}
template <class Model> void LanguageModelKen<Model>::CalcScore(const Phrase &phrase, float &fullScore, float &ngramScore, size_t &oovCount) const
{
fullScore = 0;
ngramScore = 0;
oovCount = 0;
if (!phrase.GetSize()) return;
lm::ngram::ChartState discarded_sadly;
lm::ngram::RuleScore<Model> scorer(*m_ngram, discarded_sadly);
size_t position;
if (m_beginSentenceFactor == phrase.GetWord(0).GetFactor(m_factorType)) {
scorer.BeginSentence();
position = 1;
} else {
position = 0;
}
size_t ngramBoundary = m_ngram->Order() - 1;
size_t end_loop = std::min(ngramBoundary, phrase.GetSize());
for (; position < end_loop; ++position) {
const Word &word = phrase.GetWord(position);
if (word.IsNonTerminal()) {
fullScore += scorer.Finish();
scorer.Reset();
} else {
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
if (!index) ++oovCount;
}
}
float before_boundary = fullScore + scorer.Finish();
for (; position < phrase.GetSize(); ++position) {
const Word &word = phrase.GetWord(position);
if (word.IsNonTerminal()) {
fullScore += scorer.Finish();
scorer.Reset();
} else {
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
if (!index) ++oovCount;
}
}
fullScore += scorer.Finish();
ngramScore = TransformLMScore(fullScore - before_boundary);
fullScore = TransformLMScore(fullScore);
}
template <class Model> FFState *LanguageModelKen<Model>::EvaluateWhenApplied(const Hypothesis &hypo, const FFState *ps, ScoreComponentCollection *out) const
{
const lm::ngram::State &in_state = static_cast<const KenLMState&>(*ps).state;
std::auto_ptr<KenLMState> ret(new KenLMState());
if (!hypo.GetCurrTargetLength()) {
ret->state = in_state;
return ret.release();
}
const std::size_t begin = hypo.GetCurrTargetWordsRange().GetStartPos();
//[begin, end) in STL-like fashion.
const std::size_t end = hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
const std::size_t adjust_end = std::min(end, begin + m_ngram->Order() - 1);
std::size_t position = begin;
typename Model::State aux_state;
typename Model::State *state0 = &ret->state, *state1 = &aux_state;
float score = m_ngram->Score(in_state, TranslateID(hypo.GetWord(position)), *state0);
++position;
for (; position < adjust_end; ++position) {
score += m_ngram->Score(*state0, TranslateID(hypo.GetWord(position)), *state1);
std::swap(state0, state1);
}
if (hypo.IsSourceCompleted()) {
// Score end of sentence.
std::vector<lm::WordIndex> indices(m_ngram->Order() - 1);
const lm::WordIndex *last = LastIDs(hypo, &indices.front());
score += m_ngram->FullScoreForgotState(&indices.front(), last, m_ngram->GetVocabulary().EndSentence(), ret->state).prob;
} else if (adjust_end < end) {
// Get state after adding a long phrase.
std::vector<lm::WordIndex> indices(m_ngram->Order() - 1);
const lm::WordIndex *last = LastIDs(hypo, &indices.front());
m_ngram->GetState(&indices.front(), last, ret->state);
} else if (state0 != &ret->state) {
// Short enough phrase that we can just reuse the state.
ret->state = *state0;
}
score = TransformLMScore(score);
if (OOVFeatureEnabled()) {
std::vector<float> scores(2);
scores[0] = score;
scores[1] = 0.0;
out->PlusEquals(this, scores);
} else {
out->PlusEquals(this, score);
}
return ret.release();
}
class LanguageModelChartStateKenLM : public FFState
{
public:
LanguageModelChartStateKenLM() {}
const lm::ngram::ChartState &GetChartState() const {
return m_state;
}
lm::ngram::ChartState &GetChartState() {
return m_state;
}
size_t hash() const {
size_t ret = hash_value(m_state);
return ret;
}
virtual bool operator==(const FFState& o) const {
const LanguageModelChartStateKenLM &other = static_cast<const LanguageModelChartStateKenLM &>(o);
bool ret = m_state == other.m_state;
return ret;
}
private:
lm::ngram::ChartState m_state;
};
template <class Model> FFState *LanguageModelKen<Model>::EvaluateWhenApplied(const ChartHypothesis& hypo, int featureID, ScoreComponentCollection *accumulator) const
{
LanguageModelChartStateKenLM *newState = new LanguageModelChartStateKenLM();
lm::ngram::RuleScore<Model> ruleScore(*m_ngram, newState->GetChartState());
const TargetPhrase &target = hypo.GetCurrTargetPhrase();
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
target.GetAlignNonTerm().GetNonTermIndexMap();
const size_t size = hypo.GetCurrTargetPhrase().GetSize();
size_t phrasePos = 0;
// Special cases for first word.
if (size) {
const Word &word = hypo.GetCurrTargetPhrase().GetWord(0);
if (word.GetFactor(m_factorType) == m_beginSentenceFactor) {
// Begin of sentence
ruleScore.BeginSentence();
phrasePos++;
} else if (word.IsNonTerminal()) {
// Non-terminal is first so we can copy instead of rescoring.
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndexMap[phrasePos]);
const lm::ngram::ChartState &prevState = static_cast<const LanguageModelChartStateKenLM*>(prevHypo->GetFFState(featureID))->GetChartState();
ruleScore.BeginNonTerminal(prevState);
phrasePos++;
}
}
for (; phrasePos < size; phrasePos++) {
const Word &word = hypo.GetCurrTargetPhrase().GetWord(phrasePos);
if (word.IsNonTerminal()) {
const ChartHypothesis *prevHypo = hypo.GetPrevHypo(nonTermIndexMap[phrasePos]);
const lm::ngram::ChartState &prevState = static_cast<const LanguageModelChartStateKenLM*>(prevHypo->GetFFState(featureID))->GetChartState();
ruleScore.NonTerminal(prevState);
} else {
ruleScore.Terminal(TranslateID(word));
}
}
float score = ruleScore.Finish();
score = TransformLMScore(score);
score -= hypo.GetTranslationOption().GetScores().GetScoresForProducer(this)[0];
if (OOVFeatureEnabled()) {
std::vector<float> scores(2);
scores[0] = score;
scores[1] = 0.0;
accumulator->PlusEquals(this, scores);
} else {
accumulator->PlusEquals(this, score);
}
return newState;
}
template <class Model> FFState *LanguageModelKen<Model>::EvaluateWhenApplied(const Syntax::SHyperedge& hyperedge, int featureID, ScoreComponentCollection *accumulator) const
{
LanguageModelChartStateKenLM *newState = new LanguageModelChartStateKenLM();
lm::ngram::RuleScore<Model> ruleScore(*m_ngram, newState->GetChartState());
const TargetPhrase &target = *hyperedge.label.translation;
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
target.GetAlignNonTerm().GetNonTermIndexMap2();
const size_t size = target.GetSize();
size_t phrasePos = 0;
// Special cases for first word.
if (size) {
const Word &word = target.GetWord(0);
if (word.GetFactor(m_factorType) == m_beginSentenceFactor) {
// Begin of sentence
ruleScore.BeginSentence();
phrasePos++;
} else if (word.IsNonTerminal()) {
// Non-terminal is first so we can copy instead of rescoring.
const Syntax::SVertex *pred = hyperedge.tail[nonTermIndexMap[phrasePos]];
const lm::ngram::ChartState &prevState = static_cast<const LanguageModelChartStateKenLM*>(pred->states[featureID])->GetChartState();
ruleScore.BeginNonTerminal(prevState);
phrasePos++;
}
}
for (; phrasePos < size; phrasePos++) {
const Word &word = target.GetWord(phrasePos);
if (word.IsNonTerminal()) {
const Syntax::SVertex *pred = hyperedge.tail[nonTermIndexMap[phrasePos]];
const lm::ngram::ChartState &prevState = static_cast<const LanguageModelChartStateKenLM*>(pred->states[featureID])->GetChartState();
ruleScore.NonTerminal(prevState);
} else {
ruleScore.Terminal(TranslateID(word));
}
}
float score = ruleScore.Finish();
score = TransformLMScore(score);
score -= target.GetScoreBreakdown().GetScoresForProducer(this)[0];
if (OOVFeatureEnabled()) {
std::vector<float> scores(2);
scores[0] = score;
scores[1] = 0.0;
accumulator->PlusEquals(this, scores);
} else {
accumulator->PlusEquals(this, score);
}
return newState;
}
template <class Model> void LanguageModelKen<Model>::IncrementalCallback(Incremental::Manager &manager) const
{
manager.LMCallback(*m_ngram, m_lmIdLookup);
}
template <class Model> void LanguageModelKen<Model>::ReportHistoryOrder(std::ostream &out, const Phrase &phrase) const
{
out << "|lm=(";
if (!phrase.GetSize()) return;
typename Model::State aux_state;
typename Model::State start_of_sentence_state = m_ngram->BeginSentenceState();
typename Model::State *state0 = &start_of_sentence_state;
typename Model::State *state1 = &aux_state;
for (std::size_t position=0; position<phrase.GetSize(); position++) {
const lm::WordIndex idx = TranslateID(phrase.GetWord(position));
lm::FullScoreReturn ret(m_ngram->FullScore(*state0, idx, *state1));
if (position) out << ",";
out << (int) ret.ngram_length << ":" << TransformLMScore(ret.prob);
if (idx == 0) out << ":unk";
std::swap(state0, state1);
}
out << ")| ";
}
template <class Model>
bool LanguageModelKen<Model>::IsUseable(const FactorMask &mask) const
{
bool ret = mask[m_factorType];
return ret;
}
/* Instantiate LanguageModelKen here. Tells the compiler to generate code
* for the instantiations' non-inline member functions in this file.
* Otherwise, depending on the compiler, those functions may not be present
* at link time.
*/
template class LanguageModelKen<lm::ngram::ProbingModel>;
template class LanguageModelKen<lm::ngram::RestProbingModel>;
template class LanguageModelKen<lm::ngram::TrieModel>;
template class LanguageModelKen<lm::ngram::ArrayTrieModel>;
template class LanguageModelKen<lm::ngram::QuantTrieModel>;
template class LanguageModelKen<lm::ngram::QuantArrayTrieModel>;
LanguageModel *ConstructKenLM(const std::string &lineOrig)
{
FactorType factorType = 0;
string filePath;
util::LoadMethod load_method = util::POPULATE_OR_READ;
util::TokenIter<util::SingleCharacter, true> argument(lineOrig, ' ');
++argument; // KENLM
util::StringStream line;
line << "KENLM";
for (; argument; ++argument) {
const char *equals = std::find(argument->data(), argument->data() + argument->size(), '=');
UTIL_THROW_IF2(equals == argument->data() + argument->size(),
"Expected = in KenLM argument " << *argument);
StringPiece name(argument->data(), equals - argument->data());
StringPiece value(equals + 1, argument->data() + argument->size() - equals - 1);
if (name == "factor") {
factorType = boost::lexical_cast<FactorType>(value);
} else if (name == "order") {
// Ignored
} else if (name == "path") {
filePath.assign(value.data(), value.size());
} else if (name == "lazyken") {
// deprecated: use load instead.
if (value == "0" || value == "false") {
load_method = util::POPULATE_OR_READ;
} else if (value == "1" || value == "true") {
load_method = util::LAZY;
} else {
UTIL_THROW2("Can't parse lazyken argument " << value << ". Also, lazyken is deprecated. Use load with one of the arguments lazy, populate_or_lazy, populate_or_read, read, or parallel_read.");
}
} else if (name == "load") {
if (value == "lazy") {
load_method = util::LAZY;
} else if (value == "populate_or_lazy") {
load_method = util::POPULATE_OR_LAZY;
} else if (value == "populate_or_read" || value == "populate") {
load_method = util::POPULATE_OR_READ;
} else if (value == "read") {
load_method = util::READ;
} else if (value == "parallel_read") {
load_method = util::PARALLEL_READ;
} else {
UTIL_THROW2("Unknown KenLM load method " << value);
}
} else {
// pass to base class to interpret
line << " " << name << "=" << value;
}
}
return ConstructKenLM(line.str(), filePath, factorType, load_method);
}
LanguageModel *ConstructKenLM(const std::string &line, const std::string &file, FactorType factorType, util::LoadMethod load_method)
{
lm::ngram::ModelType model_type;
if (lm::ngram::RecognizeBinary(file.c_str(), model_type)) {
switch(model_type) {
case lm::ngram::PROBING:
return new LanguageModelKen<lm::ngram::ProbingModel>(line, file, factorType, load_method);
case lm::ngram::REST_PROBING:
return new LanguageModelKen<lm::ngram::RestProbingModel>(line, file, factorType, load_method);
case lm::ngram::TRIE:
return new LanguageModelKen<lm::ngram::TrieModel>(line, file, factorType, load_method);
case lm::ngram::QUANT_TRIE:
return new LanguageModelKen<lm::ngram::QuantTrieModel>(line, file, factorType, load_method);
case lm::ngram::ARRAY_TRIE:
return new LanguageModelKen<lm::ngram::ArrayTrieModel>(line, file, factorType, load_method);
case lm::ngram::QUANT_ARRAY_TRIE:
return new LanguageModelKen<lm::ngram::QuantArrayTrieModel>(line, file, factorType, load_method);
default:
UTIL_THROW2("Unrecognized kenlm model type " << model_type);
}
} else {
return new LanguageModelKen<lm::ngram::ProbingModel>(line, file, factorType, load_method);
}
}
}
|