File size: 13,491 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
//
// Oliver Wilson <[email protected]>
//
// This file should be compiled only when the LM_RAND flag is enabled.
//
// The following ifdef prevents XCode and other non-bjam build systems
// from attempting to compile this file when LM_RAND is disabled.
//
#ifdef LM_RAND
#include "LM/Base.h"
#include "LM/LDHT.h"
#include "moses/FFState.h"
#include "moses/TypeDef.h"
#include "moses/Hypothesis.h"
#include "moses/StaticData.h"
#include "util/exception.hh"
#include <LDHT/Client.h>
#include <LDHT/ClientLocal.h>
#include <LDHT/NewNgram.h>
#include <LDHT/FactoryCollection.h>
#include <boost/thread/tss.hpp>
namespace Moses
{
struct LDHTLMState : public FFState {
LDHT::NewNgram gram_fingerprints;
bool finalised;
std::vector<int> request_tags;
LDHTLMState(): finalised(false) {
}
void setFinalised() {
this->finalised = true;
}
void appendRequestTag(int tag) {
this->request_tags.push_back(tag);
}
void clearRequestTags() {
this->request_tags.clear();
}
std::vector<int>::iterator requestTagsBegin() {
return this->request_tags.begin();
}
std::vector<int>::iterator requestTagsEnd() {
return this->request_tags.end();
}
int Compare(const FFState& uncast_other) const {
const LDHTLMState &other = static_cast<const LDHTLMState&>(uncast_other);
//if (!this->finalised)
// return -1;
return gram_fingerprints.compareMoses(other.gram_fingerprints);
}
void copyFrom(const LDHTLMState& other) {
gram_fingerprints.copyFrom(other.gram_fingerprints);
finalised = false;
}
};
class LanguageModelLDHT : public LanguageModel
{
public:
LanguageModelLDHT();
LanguageModelLDHT(const std::string& path,
ScoreIndexManager& manager,
FactorType factorType);
LanguageModelLDHT(ScoreIndexManager& manager,
LanguageModelLDHT& copyFrom);
LDHT::Client* getClientUnsafe() const;
LDHT::Client* getClientSafe();
LDHT::Client* initTSSClient();
virtual ~LanguageModelLDHT();
virtual void InitializeForInput(ttasksptr const& ttask);
virtual void CleanUpAfterSentenceProcessing(const InputType &source);
virtual const FFState* EmptyHypothesisState(const InputType& input) const;
virtual void CalcScore(const Phrase& phrase,
float& fullScore,
float& ngramScore,
std::size_t& oovCount) const;
virtual void CalcScoreFromCache(const Phrase& phrase,
float& fullScore,
float& ngramScore,
std::size_t& oovCount) const;
FFState* Evaluate(const Hypothesis& hypo,
const FFState* input_state,
ScoreComponentCollection* score_output) const;
FFState* EvaluateWhenApplied(const ChartHypothesis& hypo,
int featureID,
ScoreComponentCollection* accumulator) const;
virtual void IssueRequestsFor(Hypothesis& hypo,
const FFState* input_state);
float calcScoreFromState(LDHTLMState* hypo) const;
void sync();
void SetFFStateIdx(int state_idx);
protected:
boost::thread_specific_ptr<LDHT::Client> m_client;
std::string m_configPath;
FactorType m_factorType;
int m_state_idx;
int m_calc_score_count;
uint64_t m_start_tick;
};
LanguageModel* ConstructLDHTLM(const std::string& path,
ScoreIndexManager& manager,
FactorType factorType)
{
return new LanguageModelLDHT(path, manager, factorType);
}
LanguageModelLDHT::LanguageModelLDHT() : LanguageModel(), m_client(NULL)
{
m_enableOOVFeature = false;
}
LanguageModelLDHT::LanguageModelLDHT(ScoreIndexManager& manager,
LanguageModelLDHT& copyFrom)
{
m_calc_score_count = 0;
//m_client = copyFrom.m_client;
m_factorType = copyFrom.m_factorType;
m_configPath = copyFrom.m_configPath;
Init(manager);
}
LanguageModelLDHT::LanguageModelLDHT(const std::string& path,
ScoreIndexManager& manager,
FactorType factorType)
: m_factorType(factorType)
{
m_configPath = path;
Init(manager);
}
LanguageModelLDHT::~LanguageModelLDHT()
{
// TODO(wilson): should cleanup for each individual thread.
//delete getClientSafe();
}
// Check that there is a TSS Client instance, and instantiate one if
// there isn't.
LDHT::Client* LanguageModelLDHT::getClientSafe()
{
if (m_client.get() == NULL)
m_client.reset(initTSSClient());
return m_client.get();
}
// Do not check that there is a TSS Client instance.
LDHT::Client* LanguageModelLDHT::getClientUnsafe() const
{
return m_client.get();
}
LDHT::Client* LanguageModelLDHT::initTSSClient()
{
std::ifstream config_file(m_configPath.c_str());
std::string ldht_config_path;
getline(config_file, ldht_config_path);
std::string ldhtlm_config_path;
getline(config_file, ldhtlm_config_path);
LDHT::FactoryCollection* factory_collection =
LDHT::FactoryCollection::createDefaultFactoryCollection();
LDHT::Client* client;
//client = new LDHT::ClientLocal();
client = new LDHT::Client();
client->fromXmlFiles(*factory_collection,
ldht_config_path,
ldhtlm_config_path);
return client;
}
void LanguageModelLDHT::InitializeForInput(ttasksptr const& ttask)
{
getClientSafe()->clearCache();
m_start_tick = LDHT::Util::rdtsc();
}
void LanguageModelLDHT::CleanUpAfterSentenceProcessing(const InputType &source)
{
LDHT::Client* client = getClientSafe();
std::cerr << "LDHT sentence stats:" << std::endl;
std::cerr << " ngrams submitted: " << client->getNumNgramsSubmitted() << std::endl
<< " ngrams requested: " << client->getNumNgramsRequested() << std::endl
<< " ngrams not found: " << client->getKeyNotFoundCount() << std::endl
<< " cache hits: " << client->getCacheHitCount() << std::endl
<< " inferences: " << client->getInferenceCount() << std::endl
<< " pcnt latency: " << (float)client->getLatencyTicks() / (float)(LDHT::Util::rdtsc() - m_start_tick) * 100.0 << std::endl;
m_start_tick = 0;
client->resetLatencyTicks();
client->resetNumNgramsSubmitted();
client->resetNumNgramsRequested();
client->resetInferenceCount();
client->resetCacheHitCount();
client->resetKeyNotFoundCount();
}
const FFState* LanguageModelLDHT::EmptyHypothesisState(
const InputType& input) const
{
return NULL;
}
void LanguageModelLDHT::CalcScore(const Phrase& phrase,
float& fullScore,
float& ngramScore,
std::size_t& oovCount) const
{
const_cast<LanguageModelLDHT*>(this)->m_calc_score_count++;
if (m_calc_score_count > 10000) {
const_cast<LanguageModelLDHT*>(this)->m_calc_score_count = 0;
const_cast<LanguageModelLDHT*>(this)->sync();
}
// TODO(wilson): handle nonterminal words.
LDHT::Client* client = getClientUnsafe();
// Score the first order - 1 words of the phrase.
int order = LDHT::NewNgram::k_max_order;
int prefix_start = 0;
int prefix_end = std::min(phrase.GetSize(), static_cast<size_t>(order - 1));
LDHT::NewNgram ngram;
for (int word_idx = prefix_start; word_idx < prefix_end; ++word_idx) {
ngram.appendGram(phrase.GetWord(word_idx)
.GetFactor(m_factorType)->GetString().c_str());
client->requestNgram(ngram);
}
// Now score all subsequent ngrams to end of phrase.
int internal_start = prefix_end;
int internal_end = phrase.GetSize();
for (int word_idx = internal_start; word_idx < internal_end; ++word_idx) {
ngram.appendGram(phrase.GetWord(word_idx)
.GetFactor(m_factorType)->GetString().c_str());
client->requestNgram(ngram);
}
fullScore = 0;
ngramScore = 0;
oovCount = 0;
}
void LanguageModelLDHT::CalcScoreFromCache(const Phrase& phrase,
float& fullScore,
float& ngramScore,
std::size_t& oovCount) const
{
// Issue requests for phrase internal ngrams.
// Sync if necessary. (or autosync).
const_cast<LanguageModelLDHT*>(this)->sync();
// TODO(wilson): handle nonterminal words.
LDHT::Client* client = getClientUnsafe();
// Score the first order - 1 words of the phrase.
int order = LDHT::NewNgram::k_max_order;
int prefix_start = 0;
int prefix_end = std::min(phrase.GetSize(), static_cast<size_t>(order - 1));
LDHT::NewNgram ngram;
std::deque<int> full_score_tags;
for (int word_idx = prefix_start; word_idx < prefix_end; ++word_idx) {
ngram.appendGram(phrase.GetWord(word_idx)
.GetFactor(m_factorType)->GetString().c_str());
full_score_tags.push_back(client->requestNgram(ngram));
}
// Now score all subsequent ngrams to end of phrase.
int internal_start = prefix_end;
int internal_end = phrase.GetSize();
std::deque<int> internal_score_tags;
for (int word_idx = internal_start; word_idx < internal_end; ++word_idx) {
ngram.appendGram(phrase.GetWord(word_idx)
.GetFactor(m_factorType)->GetString().c_str());
internal_score_tags.push_back(client->requestNgram(ngram));
}
// Wait for resposes from the servers.
//client->awaitResponses();
// Calculate the full phrase score, and the internal score.
fullScore = 0.0;
while (!full_score_tags.empty()) {
fullScore += client->getNgramScore(full_score_tags.front());
full_score_tags.pop_front();
}
ngramScore = 0.0;
while (!internal_score_tags.empty()) {
float score = client->getNgramScore(internal_score_tags.front());
internal_score_tags.pop_front();
fullScore += score;
ngramScore += score;
}
fullScore = TransformLMScore(fullScore);
ngramScore = TransformLMScore(ngramScore);
oovCount = 0;
}
void LanguageModelLDHT::IssueRequestsFor(Hypothesis& hypo,
const FFState* input_state)
{
// TODO(wilson): handle nonterminal words.
LDHT::Client* client = getClientUnsafe();
// Create a new state and copy the contents of the input_state if
// supplied.
LDHTLMState* new_state = new LDHTLMState();
if (input_state == NULL) {
if (hypo.GetCurrTargetWordsRange().GetStartPos() != 0) {
UTIL_THROW2("got a null state but not at start of sentence");
}
new_state->gram_fingerprints.appendGram(BOS_);
} else {
if (hypo.GetCurrTargetWordsRange().GetStartPos() == 0) {
UTIL_THROW2("got a non null state but at start of sentence");
}
new_state->copyFrom(static_cast<const LDHTLMState&>(*input_state));
}
// Score ngrams that overlap with the previous phrase.
int order = LDHT::NewNgram::k_max_order;
int phrase_start = hypo.GetCurrTargetWordsRange().GetStartPos();
int phrase_end = hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
int overlap_start = phrase_start;
int overlap_end = std::min(phrase_end, phrase_start + order - 1);
int word_idx = overlap_start;
LDHT::NewNgram& ngram = new_state->gram_fingerprints;
for (; word_idx < overlap_end; ++word_idx) {
ngram.appendGram(
hypo.GetFactor(word_idx, m_factorType)->GetString().c_str());
new_state->appendRequestTag(client->requestNgram(ngram));
}
// No need to score phrase internal ngrams, but keep track of them
// in the state (which in this case is the NewNgram containing the
// hashes of the individual grams).
for (; word_idx < phrase_end; ++word_idx) {
ngram.appendGram(
hypo.GetFactor(word_idx, m_factorType)->GetString().c_str());
}
// If this is the last phrase in the sentence, score the last ngram
// with the end of sentence marker on it.
if (hypo.IsSourceCompleted()) {
ngram.appendGram(EOS_);
//request_tags.push_back(client->requestNgram(ngram));
new_state->appendRequestTag(client->requestNgram(ngram));
}
hypo.SetFFState(m_state_idx, new_state);
}
void LanguageModelLDHT::sync()
{
m_calc_score_count = 0;
getClientUnsafe()->awaitResponses();
}
void LanguageModelLDHT::SetFFStateIdx(int state_idx)
{
m_state_idx = state_idx;
}
FFState* LanguageModelLDHT::Evaluate(
const Hypothesis& hypo,
const FFState* input_state_ignored,
ScoreComponentCollection* score_output) const
{
// Input state is the state from the previous hypothesis, which
// we are not interested in. The requests for this hypo should
// already have been issued via IssueRequestsFor() and the LM then
// synced and all responses processed, and the tags placed in our
// FFState of hypo.
LDHTLMState* state = const_cast<LDHTLMState*>(static_cast<const LDHTLMState*>(hypo.GetFFState(m_state_idx)));
float score = calcScoreFromState(state);
score = FloorScore(TransformLMScore(score));
score_output->PlusEquals(this, score);
return state;
}
FFState* LanguageModelLDHT::EvaluateWhenApplied(
const ChartHypothesis& hypo,
int featureID,
ScoreComponentCollection* accumulator) const
{
return NULL;
}
float LanguageModelLDHT::calcScoreFromState(LDHTLMState* state) const
{
float score = 0.0;
std::vector<int>::iterator tag_iter;
LDHT::Client* client = getClientUnsafe();
for (tag_iter = state->requestTagsBegin();
tag_iter != state->requestTagsEnd();
++tag_iter) {
score += client->getNgramScore(*tag_iter);
}
state->clearRequestTags();
state->setFinalised();
return score;
}
} // namespace Moses.
#endif
|