File size: 5,318 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
// This file should be compiled only when the LM_RAND flag is enabled.
//
// The following ifdef prevents XCode and other non-bjam build systems
// from attempting to compile this file when LM_RAND is disabled.
//
#include <limits>
#include <iostream>
#include <fstream>
#include "Rand.h"
#include "moses/Factor.h"
#include "moses/Util.h"
#include "moses/FactorCollection.h"
#include "moses/Phrase.h"
#include "moses/InputFileStream.h"
#include "moses/StaticData.h"
#include "RandLM.h"
using namespace std;
namespace Moses
{
LanguageModelRandLM::LanguageModelRandLM(const std::string &line)
:LanguageModelSingleFactor(line)
, m_lm(0)
{
}
LanguageModelRandLM::~LanguageModelRandLM()
{
delete m_lm;
}
void LanguageModelRandLM::Load(AllOptions::ptr const& opts)
{
cerr << "Loading LanguageModelRandLM..." << endl;
FactorCollection &factorCollection = FactorCollection::Instance();
int cache_MB = 50; // increase cache size
m_lm = randlm::RandLM::initRandLM(m_filePath, m_nGramOrder, cache_MB);
UTIL_THROW_IF2(m_lm == NULL, "RandLM object not created");
// get special word ids
m_oov_id = m_lm->getWordID(m_lm->getOOV());
CreateFactors(factorCollection);
m_lm->initThreadSpecificData();
}
void LanguageModelRandLM::CreateFactors(FactorCollection &factorCollection) // add factors which have randlm id
{
// code copied & paste from SRI LM class. should do template function
// first get all bf vocab in map
std::map<size_t, randlm::WordID> randlm_ids_map; // map from factor id -> randlm id
size_t maxFactorId = 0; // to create lookup vector later on
for(std::map<randlm::Word, randlm::WordID>::const_iterator vIter = m_lm->vocabStart();
vIter != m_lm->vocabEnd(); vIter++) {
// get word from randlm vocab and associate with (new) factor id
size_t factorId=factorCollection.AddFactor(Output,m_factorType,vIter->first)->GetId();
randlm_ids_map[factorId] = vIter->second;
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
}
// add factors for BOS and EOS and store bf word ids
size_t factorId;
m_sentenceStart = factorCollection.AddFactor(Output, m_factorType, m_lm->getBOS());
factorId = m_sentenceStart->GetId();
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceStartWord[m_factorType] = m_sentenceStart;
m_sentenceEnd = factorCollection.AddFactor(Output, m_factorType, m_lm->getEOS());
factorId = m_sentenceEnd->GetId();
maxFactorId = (factorId > maxFactorId) ? factorId : maxFactorId;
m_sentenceEndWord[m_factorType] = m_sentenceEnd;
// add to lookup vector in object
m_randlm_ids_vec.resize(maxFactorId+1);
// fill with OOV code
fill(m_randlm_ids_vec.begin(), m_randlm_ids_vec.end(), m_oov_id);
for (map<size_t, randlm::WordID>::const_iterator iter = randlm_ids_map.begin();
iter != randlm_ids_map.end() ; ++iter)
m_randlm_ids_vec[iter->first] = iter->second;
}
randlm::WordID LanguageModelRandLM::GetLmID( const std::string &str ) const
{
return m_lm->getWordID(str);
}
randlm::WordID LanguageModelRandLM::GetLmID( const Factor *factor ) const
{
size_t factorId = factor->GetId();
return ( factorId >= m_randlm_ids_vec.size()) ? m_oov_id : m_randlm_ids_vec[factorId];
}
LMResult LanguageModelRandLM::GetValue(const vector<const Word*> &contextFactor,
State* finalState) const
{
FactorType factorType = GetFactorType();
// set up context
randlm::WordID ngram[MAX_NGRAM_SIZE];
int count = contextFactor.size();
for (int i = 0 ; i < count ; i++) {
ngram[i] = GetLmID((*contextFactor[i])[factorType]);
//std::cerr << m_lm->getWord(ngram[i]) << " ";
}
int found = 0;
LMResult ret;
ret.score = FloorScore(TransformLMScore(m_lm->getProb(&ngram[0], count, &found, finalState)));
ret.unknown = count && (ngram[count - 1] == m_oov_id);
//if (finalState)
// std::cerr << " = " << logprob << "(" << *finalState << ", " <<")"<< std::endl;
//else
// std::cerr << " = " << logprob << std::endl;
return ret;
}
void LanguageModelRandLM::InitializeForInput(ttasksptr const& ttask)
{
m_lm->initThreadSpecificData(); // Creates thread specific data iff // compiled with multithreading.
}
void LanguageModelRandLM::CleanUpAfterSentenceProcessing(const InputType& source)
{
m_lm->clearCaches(); // clear caches
}
}
|