File size: 12,114 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
#include "KBestExtractor.h"
#include "moses/ScoreComponentCollection.h"
#include "moses/StaticData.h"
#include <boost/scoped_ptr.hpp>
#include <vector>
namespace Moses
{
namespace Syntax
{
// Extract the k-best list from the search graph.
void KBestExtractor::Extract(
const std::vector<boost::shared_ptr<SVertex> > &topLevelVertices,
std::size_t k, KBestVec &kBestList)
{
kBestList.clear();
if (topLevelVertices.empty()) {
return;
}
// Create a new SVertex, supremeVertex, that has the best top-level SVertex as
// its predecessor and has the same score.
std::vector<boost::shared_ptr<SVertex> >::const_iterator p =
topLevelVertices.begin();
SVertex &bestTopLevelVertex = **p;
boost::scoped_ptr<SVertex> supremeVertex(new SVertex());
supremeVertex->pvertex = 0;
supremeVertex->best = new SHyperedge();
supremeVertex->best->head = supremeVertex.get();
supremeVertex->best->tail.push_back(&bestTopLevelVertex);
supremeVertex->best->label.futureScore =
bestTopLevelVertex.best->label.futureScore;
supremeVertex->best->label.deltas = bestTopLevelVertex.best->label.deltas;
supremeVertex->best->label.translation = 0;
// For each alternative top-level SVertex, add a new incoming hyperedge to
// supremeVertex.
for (++p; p != topLevelVertices.end(); ++p) {
// Check that the first item in topLevelVertices really was the best.
UTIL_THROW_IF2((*p)->best->label.futureScore >
bestTopLevelVertex.best->label.futureScore,
"top-level SVertices are not correctly sorted");
// Note: there's no need for a smart pointer here: supremeVertex will take
// ownership of altEdge.
SHyperedge *altEdge = new SHyperedge();
altEdge->head = supremeVertex.get();
altEdge->tail.push_back((*p).get());
altEdge->label.futureScore = (*p)->best->label.futureScore;
altEdge->label.deltas = (*p)->best->label.deltas;
altEdge->label.translation = 0;
supremeVertex->recombined.push_back(altEdge);
}
// Create the target vertex then lazily fill its k-best list.
boost::shared_ptr<KVertex> targetVertex = FindOrCreateVertex(*supremeVertex);
LazyKthBest(targetVertex, k, k);
// Copy the k-best list from the target vertex, but drop the top edge from
// each derivation.
kBestList.reserve(targetVertex->kBestList.size());
for (std::vector<boost::weak_ptr<Derivation> >::const_iterator
q = targetVertex->kBestList.begin();
q != targetVertex->kBestList.end(); ++q) {
const boost::shared_ptr<Derivation> d(*q);
assert(d);
assert(d->subderivations.size() == 1);
kBestList.push_back(d->subderivations[0]);
}
}
// Generate the target-side yield of the derivation d.
Phrase KBestExtractor::GetOutputPhrase(const Derivation &d)
{
FactorType placeholderFactor = StaticData::Instance().options()->input.placeholder_factor;
Phrase ret(ARRAY_SIZE_INCR);
const TargetPhrase &phrase = *(d.edge->shyperedge.label.translation);
const AlignmentInfo::NonTermIndexMap &nonTermIndexMap =
phrase.GetAlignNonTerm().GetNonTermIndexMap();
for (std::size_t pos = 0; pos < phrase.GetSize(); ++pos) {
const Word &word = phrase.GetWord(pos);
if (word.IsNonTerminal()) {
std::size_t nonTermInd = nonTermIndexMap[pos];
const Derivation &subderivation = *d.subderivations[nonTermInd];
Phrase subPhrase = GetOutputPhrase(subderivation);
ret.Append(subPhrase);
} else {
ret.AddWord(word);
if (placeholderFactor == NOT_FOUND) {
continue;
}
// FIXME
UTIL_THROW2("placeholders are not currently supported by the S2T decoder");
/*
std::set<std::size_t> sourcePosSet =
phrase.GetAlignTerm().GetAlignmentsForTarget(pos);
if (sourcePosSet.size() == 1) {
const std::vector<const Word*> *ruleSourceFromInputPath =
hypo.GetTranslationOption().GetSourceRuleFromInputPath();
UTIL_THROW_IF2(ruleSourceFromInputPath == NULL,
"Source Words in of the rules hasn't been filled out");
std::size_t sourcePos = *sourcePosSet.begin();
const Word *sourceWord = ruleSourceFromInputPath->at(sourcePos);
UTIL_THROW_IF2(sourceWord == NULL,
"Null source word at position " << sourcePos);
const Factor *factor = sourceWord->GetFactor(placeholderFactor);
if (factor) {
ret.Back()[0] = factor;
}
}
*/
}
}
return ret;
}
// Generate the target tree of the derivation d.
TreePointer KBestExtractor::GetOutputTree(const Derivation &d)
{
const TargetPhrase &phrase = *(d.edge->shyperedge.label.translation);
if (const PhraseProperty *property = phrase.GetProperty("Tree")) {
const std::string *tree = property->GetValueString();
TreePointer mytree (boost::make_shared<InternalTree>(*tree));
//get subtrees (in target order)
std::vector<TreePointer> previous_trees;
for (size_t pos = 0; pos < phrase.GetSize(); ++pos) {
const Word &word = phrase.GetWord(pos);
if (word.IsNonTerminal()) {
size_t nonTermInd = phrase.GetAlignNonTerm().GetNonTermIndexMap()[pos];
const Derivation &subderivation = *d.subderivations[nonTermInd];
const TreePointer prev_tree = GetOutputTree(subderivation);
previous_trees.push_back(prev_tree);
}
}
mytree->Combine(previous_trees);
return mytree;
} else {
UTIL_THROW2("Error: TreeStructureFeature active, but no internal tree structure found");
}
}
// Look for the vertex corresponding to a given SVertex, creating
// a new one if necessary.
boost::shared_ptr<KBestExtractor::KVertex>
KBestExtractor::FindOrCreateVertex(const SVertex &v)
{
// KVertex nodes should not be created for terminal nodes.
assert(v.best);
VertexMap::value_type element(&v, boost::shared_ptr<KVertex>());
std::pair<VertexMap::iterator, bool> p = m_vertexMap.insert(element);
boost::shared_ptr<KVertex> &sp = p.first->second;
if (!p.second) {
return sp; // KVertex was already in m_vertexMap.
}
sp.reset(new KVertex(v));
// Create the 1-best derivation and add it to the vertex's kBestList.
boost::shared_ptr<KHyperedge> bestEdge(new KHyperedge(*(v.best)));
bestEdge->head = sp;
std::size_t kTailSize = 0;
for (std::size_t i = 0; i < v.best->tail.size(); ++i) {
const SVertex *pred = v.best->tail[i];
if (pred->best) {
++kTailSize;
}
}
bestEdge->tail.reserve(kTailSize);
for (std::size_t i = 0; i < v.best->tail.size(); ++i) {
const SVertex *pred = v.best->tail[i];
if (pred->best) {
bestEdge->tail.push_back(FindOrCreateVertex(*pred));
}
}
boost::shared_ptr<Derivation> bestDerivation(new Derivation(bestEdge));
#ifndef NDEBUG
std::pair<DerivationSet::iterator, bool> q =
#endif
m_derivations.insert(bestDerivation);
assert(q.second);
sp->kBestList.push_back(bestDerivation);
return sp;
}
// Create the 1-best derivation for each edge in BS(v) (except the best one)
// and add it to v's candidate queue.
void KBestExtractor::GetCandidates(boost::shared_ptr<KVertex> v, std::size_t k)
{
// Create 1-best derivations for all of v's incoming edges except the best.
// The 1-best derivation for that edge will already have been created.
for (std::size_t i = 0; i < v->svertex.recombined.size(); ++i) {
const SHyperedge ­peredge = *(v->svertex.recombined[i]);
boost::shared_ptr<KHyperedge> bestEdge(new KHyperedge(shyperedge));
bestEdge->head = v;
// Count the number of incoming vertices that are not terminals.
std::size_t kTailSize = 0;
for (std::size_t j = 0; j < shyperedge.tail.size(); ++j) {
const SVertex *pred = shyperedge.tail[j];
if (pred->best) {
++kTailSize;
}
}
bestEdge->tail.reserve(kTailSize);
for (std::size_t j = 0; j < shyperedge.tail.size(); ++j) {
const SVertex *pred = shyperedge.tail[j];
if (pred->best) {
bestEdge->tail.push_back(FindOrCreateVertex(*pred));
}
}
boost::shared_ptr<Derivation> derivation(new Derivation(bestEdge));
#ifndef NDEBUG
std::pair<DerivationSet::iterator, bool> q =
#endif
m_derivations.insert(derivation);
assert(q.second);
v->candidates.push(derivation);
}
}
// Lazily fill v's k-best list.
void KBestExtractor::LazyKthBest(boost::shared_ptr<KVertex> v, std::size_t k,
std::size_t globalK)
{
// If this is the first visit to vertex v then initialize the priority queue.
if (v->visited == false) {
// The 1-best derivation should already be in v's k-best list.
assert(v->kBestList.size() == 1);
// Initialize v's priority queue.
GetCandidates(v, globalK);
v->visited = true;
}
// Add derivations to the k-best list until it contains k or there are none
// left to add.
while (v->kBestList.size() < k) {
assert(!v->kBestList.empty());
// Update the priority queue by adding the successors of the last
// derivation (unless they've been seen before).
boost::shared_ptr<Derivation> d(v->kBestList.back());
LazyNext(*v, *d, globalK);
// Check if there are any derivations left in the queue.
if (v->candidates.empty()) {
break;
}
// Get the next best derivation and delete it from the queue.
boost::weak_ptr<Derivation> next = v->candidates.top();
v->candidates.pop();
// Add it to the k-best list.
v->kBestList.push_back(next);
}
}
// Create the neighbours of Derivation d and add them to v's candidate queue.
void KBestExtractor::LazyNext(KVertex &v, const Derivation &d,
std::size_t globalK)
{
for (std::size_t i = 0; i < d.edge->tail.size(); ++i) {
boost::shared_ptr<KVertex> pred = d.edge->tail[i];
// Ensure that pred's k-best list contains enough derivations.
std::size_t k = d.backPointers[i] + 2;
LazyKthBest(pred, k, globalK);
if (pred->kBestList.size() < k) {
// pred's derivations have been exhausted.
continue;
}
// Create the neighbour.
boost::shared_ptr<Derivation> next(new Derivation(d, i));
// Check if it has been created before.
std::pair<DerivationSet::iterator, bool> p = m_derivations.insert(next);
if (p.second) {
v.candidates.push(next); // Haven't previously seen it.
}
}
}
// Construct the 1-best Derivation that ends at edge e.
KBestExtractor::Derivation::Derivation(const boost::shared_ptr<KHyperedge> &e)
{
edge = e;
const TargetPhrase *translation = edge->shyperedge.label.translation;
// Every hyperedge should have an associated target phrase, except for
// incoming hyperedges of the 'supreme' vertex.
if (translation) {
scoreBreakdown = translation->GetScoreBreakdown();
}
const std::size_t arity = edge->tail.size();
backPointers.resize(arity, 0);
subderivations.reserve(arity);
for (std::size_t i = 0; i < arity; ++i) {
const KVertex &pred = *(edge->tail[i]);
assert(pred.kBestList.size() >= 1);
boost::shared_ptr<Derivation> sub(pred.kBestList[0]);
subderivations.push_back(sub);
scoreBreakdown.PlusEquals(sub->scoreBreakdown);
}
scoreBreakdown.PlusEquals(edge->shyperedge.label.deltas);
score = scoreBreakdown.GetWeightedScore();
}
// Construct a Derivation that neighbours an existing Derivation.
KBestExtractor::Derivation::Derivation(const Derivation &d, std::size_t i)
{
edge = d.edge;
backPointers = d.backPointers;
subderivations = d.subderivations;
std::size_t j = ++backPointers[i];
scoreBreakdown = d.scoreBreakdown;
// Deduct the score of the old subderivation.
scoreBreakdown.MinusEquals(subderivations[i]->scoreBreakdown);
// Update the subderivation pointer.
boost::shared_ptr<Derivation> newSub(edge->tail[i]->kBestList[j]);
subderivations[i] = newSub;
// Add the score of the new subderivation.
scoreBreakdown.PlusEquals(subderivations[i]->scoreBreakdown);
score = scoreBreakdown.GetWeightedScore();
}
} // namespace Syntax
} // namespace Moses
|