File size: 10,568 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
#pragma once
#include "moses/DecodeGraph.h"
#include "moses/StaticData.h"
#include "moses/Syntax/BoundedPriorityContainer.h"
#include "moses/Syntax/CubeQueue.h"
#include "moses/Syntax/F2S/DerivationWriter.h"
#include "moses/Syntax/F2S/RuleMatcherCallback.h"
#include "moses/Syntax/PHyperedge.h"
#include "moses/Syntax/RuleTable.h"
#include "moses/Syntax/RuleTableFF.h"
#include "moses/Syntax/SHyperedgeBundle.h"
#include "moses/Syntax/SVertex.h"
#include "moses/Syntax/SVertexRecombinationEqualityPred.h"
#include "moses/Syntax/SVertexRecombinationHasher.h"
#include "moses/Syntax/SymbolEqualityPred.h"
#include "moses/Syntax/SymbolHasher.h"
#include "GlueRuleSynthesizer.h"
#include "InputTreeBuilder.h"
#include "RuleTrie.h"
namespace Moses
{
namespace Syntax
{
namespace T2S
{
template<typename RuleMatcher>
Manager<RuleMatcher>::Manager(ttasksptr const& ttask)
: Syntax::Manager(ttask)
{
if (const TreeInput *p = dynamic_cast<const TreeInput*>(&m_source)) {
// Construct the InputTree.
InputTreeBuilder builder(options()->output.factor_order);
builder.Build(*p, "Q", m_inputTree);
} else {
UTIL_THROW2("ERROR: T2S::Manager requires input to be a tree");
}
}
template<typename RuleMatcher>
void Manager<RuleMatcher>::InitializeRuleMatchers()
{
const std::vector<RuleTableFF*> &ffs = RuleTableFF::Instances();
for (std::size_t i = 0; i < ffs.size(); ++i) {
RuleTableFF *ff = ffs[i];
// This may change in the future, but currently we assume that every
// RuleTableFF is associated with a static, file-based rule table of
// some sort and that the table should have been loaded into a RuleTable
// by this point.
const RuleTable *table = ff->GetTable();
assert(table);
RuleTable *nonConstTable = const_cast<RuleTable*>(table);
RuleTrie *trie = dynamic_cast<RuleTrie*>(nonConstTable);
assert(trie);
boost::shared_ptr<RuleMatcher> p(new RuleMatcher(m_inputTree, *trie));
m_ruleMatchers.push_back(p);
}
// Create an additional rule trie + matcher for glue rules (which are
// synthesized on demand).
// FIXME Add a hidden RuleTableFF for the glue rule trie(?)
m_glueRuleTrie.reset(new RuleTrie(ffs[0]));
boost::shared_ptr<RuleMatcher> p(new RuleMatcher(m_inputTree, *m_glueRuleTrie));
m_ruleMatchers.push_back(p);
m_glueRuleMatcher = p.get();
}
template<typename RuleMatcher>
void Manager<RuleMatcher>::InitializeStacks()
{
// Check that m_inputTree has been initialized.
assert(!m_inputTree.nodes.empty());
for (std::vector<InputTree::Node>::const_iterator p =
m_inputTree.nodes.begin(); p != m_inputTree.nodes.end(); ++p) {
const InputTree::Node &node = *p;
// Create an empty stack.
SVertexStack &stack = m_stackMap[&(node.pvertex)];
// For terminals only, add a single SVertex.
if (node.children.empty()) {
boost::shared_ptr<SVertex> v(new SVertex());
v->best = 0;
v->pvertex = &(node.pvertex);
stack.push_back(v);
}
}
}
template<typename RuleMatcher>
void Manager<RuleMatcher>::Decode()
{
// const StaticData &staticData = StaticData::Instance();
// Get various pruning-related constants.
const std::size_t popLimit = this->options()->cube.pop_limit;
const std::size_t ruleLimit = this->options()->syntax.rule_limit;
const std::size_t stackLimit = this->options()->search.stack_size;
// Initialize the stacks.
InitializeStacks();
// Initialize the rule matchers.
InitializeRuleMatchers();
// Create a callback to process the PHyperedges produced by the rule matchers.
F2S::RuleMatcherCallback callback(m_stackMap, ruleLimit);
// Create a glue rule synthesizer.
Word dflt_nonterm = options()->syntax.output_default_non_terminal;
GlueRuleSynthesizer glueRuleSynthesizer(*m_glueRuleTrie, dflt_nonterm);
// Visit each node of the input tree in post-order.
for (std::vector<InputTree::Node>::const_iterator p =
m_inputTree.nodes.begin(); p != m_inputTree.nodes.end(); ++p) {
const InputTree::Node &node = *p;
// Skip terminal nodes.
if (node.children.empty()) {
continue;
}
// Call the rule matchers to generate PHyperedges for this node and
// convert each one to a SHyperedgeBundle (via the callback). The
// callback prunes the SHyperedgeBundles and keeps the best ones (up
// to ruleLimit).
callback.ClearContainer();
for (typename std::vector<boost::shared_ptr<RuleMatcher> >::iterator
q = m_ruleMatchers.begin(); q != m_ruleMatchers.end(); ++q) {
(*q)->EnumerateHyperedges(node, callback);
}
// Retrieve the (pruned) set of SHyperedgeBundles from the callback.
const BoundedPriorityContainer<SHyperedgeBundle> &bundles =
callback.GetContainer();
// Check if any rules were matched. If not then synthesize a glue rule
// that is guaranteed to match.
if (bundles.Size() == 0) {
glueRuleSynthesizer.SynthesizeRule(node);
m_glueRuleMatcher->EnumerateHyperedges(node, callback);
assert(bundles.Size() == 1);
}
// Use cube pruning to extract SHyperedges from SHyperedgeBundles and
// collect the SHyperedges in a buffer.
CubeQueue cubeQueue(bundles.Begin(), bundles.End());
std::size_t count = 0;
std::vector<SHyperedge*> buffer;
while (count < popLimit && !cubeQueue.IsEmpty()) {
SHyperedge *hyperedge = cubeQueue.Pop();
// FIXME See corresponding code in S2T::Manager
// BEGIN{HACK}
hyperedge->head->pvertex = &(node.pvertex);
// END{HACK}
buffer.push_back(hyperedge);
++count;
}
// Recombine SVertices and sort into a stack.
SVertexStack &stack = m_stackMap[&(node.pvertex)];
RecombineAndSort(buffer, stack);
// Prune stack.
if (stackLimit > 0 && stack.size() > stackLimit) {
stack.resize(stackLimit);
}
}
}
template<typename RuleMatcher>
const SHyperedge *Manager<RuleMatcher>::GetBestSHyperedge() const
{
const InputTree::Node &rootNode = m_inputTree.nodes.back();
F2S::PVertexToStackMap::const_iterator p = m_stackMap.find(&rootNode.pvertex);
assert(p != m_stackMap.end());
const SVertexStack &stack = p->second;
assert(!stack.empty());
return stack[0]->best;
}
template<typename RuleMatcher>
void Manager<RuleMatcher>::ExtractKBest(
std::size_t k,
std::vector<boost::shared_ptr<KBestExtractor::Derivation> > &kBestList,
bool onlyDistinct) const
{
kBestList.clear();
if (k == 0 || m_source.GetSize() == 0) {
return;
}
// Get the top-level SVertex stack.
const InputTree::Node &rootNode = m_inputTree.nodes.back();
F2S::PVertexToStackMap::const_iterator p = m_stackMap.find(&rootNode.pvertex);
assert(p != m_stackMap.end());
const SVertexStack &stack = p->second;
assert(!stack.empty());
KBestExtractor extractor;
if (!onlyDistinct) {
// Return the k-best list as is, including duplicate translations.
extractor.Extract(stack, k, kBestList);
return;
}
// Determine how many derivations to extract. If the k-best list is
// restricted to distinct translations then this limit should be bigger
// than k. The k-best factor determines how much bigger the limit should be,
// with 0 being 'unlimited.' This actually sets a large-ish limit in case
// too many translations are identical.
// const StaticData &staticData = StaticData::Instance();
const std::size_t nBestFactor = this->options()->nbest.factor;
std::size_t numDerivations = (nBestFactor == 0) ? k*1000 : k*nBestFactor;
// Extract the derivations.
KBestExtractor::KBestVec bigList;
bigList.reserve(numDerivations);
extractor.Extract(stack, numDerivations, bigList);
// Copy derivations into kBestList, skipping ones with repeated translations.
std::set<Phrase> distinct;
for (KBestExtractor::KBestVec::const_iterator p = bigList.begin();
kBestList.size() < k && p != bigList.end(); ++p) {
boost::shared_ptr<KBestExtractor::Derivation> derivation = *p;
Phrase translation = KBestExtractor::GetOutputPhrase(*derivation);
if (distinct.insert(translation).second) {
kBestList.push_back(derivation);
}
}
}
// TODO Move this function into parent directory (Recombiner class?) and
// TODO share with S2T
template<typename RuleMatcher>
void Manager<RuleMatcher>::RecombineAndSort(
const std::vector<SHyperedge*> &buffer, SVertexStack &stack)
{
// Step 1: Create a map containing a single instance of each distinct vertex
// (where distinctness is defined by the state value). The hyperedges'
// head pointers are updated to point to the vertex instances in the map and
// any 'duplicate' vertices are deleted.
// TODO Set?
typedef boost::unordered_map<SVertex *, SVertex *,
SVertexRecombinationHasher,
SVertexRecombinationEqualityPred> Map;
Map map;
for (std::vector<SHyperedge*>::const_iterator p = buffer.begin();
p != buffer.end(); ++p) {
SHyperedge *h = *p;
SVertex *v = h->head;
assert(v->best == h);
assert(v->recombined.empty());
std::pair<Map::iterator, bool> result = map.insert(Map::value_type(v, v));
if (result.second) {
continue; // v's recombination value hasn't been seen before.
}
// v is a duplicate (according to the recombination rules).
// Compare the score of h against the score of the best incoming hyperedge
// for the stored vertex.
SVertex *storedVertex = result.first->second;
if (h->label.futureScore > storedVertex->best->label.futureScore) {
// h's score is better.
storedVertex->recombined.push_back(storedVertex->best);
storedVertex->best = h;
} else {
storedVertex->recombined.push_back(h);
}
h->head->best = 0;
delete h->head;
h->head = storedVertex;
}
// Step 2: Copy the vertices from the map to the stack.
stack.clear();
stack.reserve(map.size());
for (Map::const_iterator p = map.begin(); p != map.end(); ++p) {
stack.push_back(boost::shared_ptr<SVertex>(p->first));
}
// Step 3: Sort the vertices in the stack.
std::sort(stack.begin(), stack.end(), SVertexStackContentOrderer());
}
template<typename RuleMatcher>
void Manager<RuleMatcher>::OutputDetailedTranslationReport(
OutputCollector *collector) const
{
const SHyperedge *best = GetBestSHyperedge();
if (best == NULL || collector == NULL) {
return;
}
long translationId = m_source.GetTranslationId();
std::ostringstream out;
F2S::DerivationWriter::Write(*best, translationId, out);
collector->Write(translationId, out.str());
}
} // T2S
} // Syntax
} // Moses
|