File size: 6,791 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
// $Id$
// vim:tabstop=2
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#ifndef moses_MonotonicVector_h
#define moses_MonotonicVector_h
// MonotonicVector - Represents a monotonic increasing function that maps
// positive integers of any size onto a given number type. Each value has to be
// equal or larger than the previous one. Depending on the stepSize it can save
// up to 90% of memory compared to a std::vector<long>. Time complexity is roughly
// constant, in the worst case, however, stepSize times slower than a normal
// std::vector.
#include <vector>
#include <limits>
#include <algorithm>
#include <cstdio>
#include <cassert>
#include "ThrowingFwrite.h"
#include "ListCoders.h"
#include "MmapAllocator.h"
namespace Moses
{
template<typename PosT = size_t, typename NumT = size_t, PosT stepSize = 32,
template <typename> class Allocator = std::allocator>
class MonotonicVector
{
private:
typedef std::vector<NumT, Allocator<NumT> > Anchors;
typedef std::vector<unsigned int, Allocator<unsigned int> > Diffs;
Anchors m_anchors;
Diffs m_diffs;
std::vector<unsigned int> m_tempDiffs;
size_t m_size;
PosT m_last;
bool m_final;
public:
typedef PosT value_type;
MonotonicVector() : m_size(0), m_last(0), m_final(false) {}
size_t size() const {
return m_size + m_tempDiffs.size();
}
PosT at(size_t i) const {
PosT s = stepSize;
PosT j = m_anchors[i / s];
PosT r = i % s;
typename Diffs::const_iterator it = m_diffs.begin() + j;
PosT k = 0;
k += VarInt32::DecodeAndSum(it, m_diffs.end(), 1);
if(i < m_size)
k += Simple9::DecodeAndSum(it, m_diffs.end(), r);
else if(i < m_size + m_tempDiffs.size())
for(size_t l = 0; l < r; l++)
k += m_tempDiffs[l];
return k;
}
PosT operator[](PosT i) const {
return at(i);
}
PosT back() const {
return at(size()-1);
}
void push_back(PosT i) {
assert(m_final != true);
if(m_anchors.size() == 0 && m_tempDiffs.size() == 0) {
m_anchors.push_back(0);
VarInt32::Encode(&i, &i+1, std::back_inserter(m_diffs));
m_last = i;
m_size++;
return;
}
if(m_tempDiffs.size() == stepSize-1) {
Simple9::Encode(m_tempDiffs.begin(), m_tempDiffs.end(),
std::back_inserter(m_diffs));
m_anchors.push_back(m_diffs.size());
VarInt32::Encode(&i, &i+1, std::back_inserter(m_diffs));
m_size += m_tempDiffs.size() + 1;
m_tempDiffs.clear();
} else {
PosT last = m_last;
PosT diff = i - last;
m_tempDiffs.push_back(diff);
}
m_last = i;
}
void commit() {
assert(m_final != true);
Simple9::Encode(m_tempDiffs.begin(), m_tempDiffs.end(),
std::back_inserter(m_diffs));
m_size += m_tempDiffs.size();
m_tempDiffs.clear();
m_final = true;
}
size_t usage() {
return m_diffs.size() * sizeof(unsigned int)
+ m_anchors.size() * sizeof(NumT);
}
size_t load(std::FILE* in, bool map = false) {
size_t byteSize = 0;
byteSize += fread(&m_final, sizeof(bool), 1, in) * sizeof(bool);
byteSize += fread(&m_size, sizeof(size_t), 1, in) * sizeof(size_t);
byteSize += fread(&m_last, sizeof(PosT), 1, in) * sizeof(PosT);
byteSize += loadVector(m_diffs, in, map);
byteSize += loadVector(m_anchors, in, map);
return byteSize;
}
template <typename ValueT>
size_t loadVector(std::vector<ValueT, std::allocator<ValueT> >& v,
std::FILE* in, bool map = false) {
// Can only be read into memory. Mapping not possible with std:allocator.
assert(map == false);
size_t byteSize = 0;
size_t valSize;
byteSize += std::fread(&valSize, sizeof(size_t), 1, in) * sizeof(size_t);
v.resize(valSize, 0);
byteSize += std::fread(&v[0], sizeof(ValueT), valSize, in) * sizeof(ValueT);
return byteSize;
}
template <typename ValueT>
size_t loadVector(std::vector<ValueT, MmapAllocator<ValueT> >& v,
std::FILE* in, bool map = false) {
size_t byteSize = 0;
size_t valSize;
byteSize += std::fread(&valSize, sizeof(size_t), 1, in) * sizeof(size_t);
if(map == false) {
// Read data into temporary file (default constructor of MmapAllocator)
// and map memory onto temporary file. Can be resized.
v.resize(valSize, 0);
byteSize += std::fread(&v[0], sizeof(ValueT), valSize, in) * sizeof(ValueT);
} else {
// Map it directly on specified region of file "in" starting at valPos
// with length valSize * sizeof(ValueT). Mapped region cannot be resized.
size_t valPos = std::ftell(in);
Allocator<ValueT> alloc(in, valPos);
std::vector<ValueT, Allocator<ValueT> > vTemp(alloc);
vTemp.resize(valSize);
v.swap(vTemp);
std::fseek(in, valSize * sizeof(ValueT), SEEK_CUR);
byteSize += valSize * sizeof(ValueT);
}
return byteSize;
}
size_t save(std::FILE* out) {
if(!m_final)
commit();
bool byteSize = 0;
byteSize += ThrowingFwrite(&m_final, sizeof(bool), 1, out) * sizeof(bool);
byteSize += ThrowingFwrite(&m_size, sizeof(size_t), 1, out) * sizeof(size_t);
byteSize += ThrowingFwrite(&m_last, sizeof(PosT), 1, out) * sizeof(PosT);
size_t size = m_diffs.size();
byteSize += ThrowingFwrite(&size, sizeof(size_t), 1, out) * sizeof(size_t);
byteSize += ThrowingFwrite(&m_diffs[0], sizeof(unsigned int), size, out) * sizeof(unsigned int);
size = m_anchors.size();
byteSize += ThrowingFwrite(&size, sizeof(size_t), 1, out) * sizeof(size_t);
byteSize += ThrowingFwrite(&m_anchors[0], sizeof(NumT), size, out) * sizeof(NumT);
return byteSize;
}
void swap(MonotonicVector<PosT, NumT, stepSize, Allocator> &mv) {
if(!m_final)
commit();
m_diffs.swap(mv.m_diffs);
m_anchors.swap(mv.m_anchors);
}
};
}
#endif
|