File size: 14,229 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/***********************************************************************
 Moses - factored phrase-based language decoder
 Copyright (C) 2006 University of Edinburgh

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 ***********************************************************************/

#include "moses/TranslationModel/PhraseDictionaryGroup.h"

#include <boost/foreach.hpp>
#include <boost/unordered_map.hpp>

#include "util/exception.hh"

using namespace std;
using namespace boost;

namespace Moses
{

PhraseDictionaryGroup::PhraseDictionaryGroup(const string &line)
  : PhraseDictionary(line, true),
    m_numModels(0),
    m_totalModelScores(0),
    m_phraseCounts(false),
    m_wordCounts(false),
    m_modelBitmapCounts(false),
    m_restrict(false),
    m_haveDefaultScores(false),
    m_defaultAverageOthers(false),
    m_scoresPerModel(0),
    m_haveMmsaptLrFunc(false)
{
  ReadParameters();
}

void PhraseDictionaryGroup::SetParameter(const string& key, const string& value)
{
  if (key == "members") {
    m_memberPDStrs = Tokenize(value, ",");
    m_numModels = m_memberPDStrs.size();
    m_seenByAll = dynamic_bitset<>(m_numModels);
    m_seenByAll.set();
  } else if (key == "restrict") {
    m_restrict = Scan<bool>(value);
  } else if (key == "phrase-counts") {
    m_phraseCounts = Scan<bool>(value);
  } else if (key == "word-counts") {
    m_wordCounts = Scan<bool>(value);
  } else if (key == "model-bitmap-counts") {
    m_modelBitmapCounts = Scan<bool>(value);
  } else if (key =="default-scores") {
    m_haveDefaultScores = true;
    m_defaultScores = Scan<float>(Tokenize(value, ","));
  } else if (key =="default-average-others") {
    m_defaultAverageOthers = Scan<bool>(value);
  } else if (key =="mmsapt-lr-func") {
    m_haveMmsaptLrFunc = true;
  } else {
    PhraseDictionary::SetParameter(key, value);
  }
}

void PhraseDictionaryGroup::Load(AllOptions::ptr const& opts)
{
  m_options = opts;
  SetFeaturesToApply();
  m_pdFeature.push_back(const_cast<PhraseDictionaryGroup*>(this));
  size_t numScoreComponents = 0;

  // Locate/check component phrase tables
  BOOST_FOREACH(const string& pdName, m_memberPDStrs) {
    bool pdFound = false;
    BOOST_FOREACH(PhraseDictionary* pd, PhraseDictionary::GetColl()) {
      if (pd->GetScoreProducerDescription() == pdName) {
        pdFound = true;
        m_memberPDs.push_back(pd);
        size_t nScores = pd->GetNumScoreComponents();
        numScoreComponents += nScores;
        if (m_scoresPerModel == 0) {
          m_scoresPerModel = nScores;
        } else if (m_defaultAverageOthers) {
          UTIL_THROW_IF2(nScores != m_scoresPerModel,
                         m_description << ": member models must have the same number of scores when using default-average-others");
        }
      }
    }
    UTIL_THROW_IF2(!pdFound,
                   m_description << ": could not find member phrase table " << pdName);
  }
  m_totalModelScores = numScoreComponents;

  // Check feature total
  if (m_phraseCounts) {
    numScoreComponents += m_numModels;
  }
  if (m_wordCounts) {
    numScoreComponents += m_numModels;
  }
  if (m_modelBitmapCounts) {
    numScoreComponents += (pow(2, m_numModels) - 1);
  }
  UTIL_THROW_IF2(numScoreComponents != m_numScoreComponents,
                 m_description << ": feature count mismatch: specify \"num-features=" << numScoreComponents << "\" and supply " << numScoreComponents << " weights");

#ifdef PT_UG
  // Locate mmsapt lexical reordering functions if specified
  if (m_haveMmsaptLrFunc) {
    BOOST_FOREACH(PhraseDictionary* pd, m_memberPDs) {
      // pointer to pointer, all start as NULL and some may be populated prior
      // to translation
      m_mmsaptLrFuncs.push_back(&(static_cast<Mmsapt*>(pd)->m_lr_func));
    }
  }
#endif

  // Determine "zero" scores for features
  if (m_haveDefaultScores) {
    UTIL_THROW_IF2(m_defaultScores.size() != m_numScoreComponents,
                   m_description << ": number of specified default scores is unequal to number of member model scores");
  } else {
    // Default is all 0 (as opposed to e.g. -99 or similar to approximate log(0)
    // or a smoothed "not in model" score)
    m_defaultScores = vector<float>(m_numScoreComponents, 0);
  }
}

void PhraseDictionaryGroup::InitializeForInput(const ttasksptr& ttask)
{
  // Member models are registered as FFs and should already be initialized
}

void PhraseDictionaryGroup::GetTargetPhraseCollectionBatch(
  const ttasksptr& ttask, const InputPathList& inputPathQueue) const
{
  // Some implementations (mmsapt) do work in PrefixExists
  BOOST_FOREACH(const InputPath* inputPath, inputPathQueue) {
    const Phrase& phrase = inputPath->GetPhrase();
    BOOST_FOREACH(const PhraseDictionary* pd, m_memberPDs) {
      pd->PrefixExists(ttask, phrase);
    }
  }
  // Look up each input in each model
  BOOST_FOREACH(InputPath* inputPath, inputPathQueue) {
    const Phrase &phrase = inputPath->GetPhrase();
    TargetPhraseCollection::shared_ptr  targetPhrases =
      this->GetTargetPhraseCollectionLEGACY(ttask, phrase);
    inputPath->SetTargetPhrases(*this, targetPhrases, NULL);
  }
}

TargetPhraseCollection::shared_ptr  PhraseDictionaryGroup::GetTargetPhraseCollectionLEGACY(
  const Phrase& src) const
{
  UTIL_THROW2("Don't call me without the translation task.");
}

TargetPhraseCollection::shared_ptr
PhraseDictionaryGroup::
GetTargetPhraseCollectionLEGACY(const ttasksptr& ttask, const Phrase& src) const
{
  TargetPhraseCollection::shared_ptr ret
  = CreateTargetPhraseCollection(ttask, src);
  ret->NthElement(m_tableLimit); // sort the phrases for pruning later
  const_cast<PhraseDictionaryGroup*>(this)->CacheForCleanup(ret);
  return ret;
}

TargetPhraseCollection::shared_ptr
PhraseDictionaryGroup::
CreateTargetPhraseCollection(const ttasksptr& ttask, const Phrase& src) const
{
  // Aggregation of phrases and corresponding statistics (scores, models seen by)
  vector<TargetPhrase*> phraseList;
  typedef unordered_map<const TargetPhrase*, PDGroupPhrase, UnorderedComparer<Phrase>, UnorderedComparer<Phrase> > PhraseMap;
  PhraseMap phraseMap;

  // For each model
  size_t offset = 0;
  for (size_t i = 0; i < m_numModels; ++i) {

    // Collect phrases from this table
    const PhraseDictionary& pd = *m_memberPDs[i];
    TargetPhraseCollection::shared_ptr
    ret_raw = pd.GetTargetPhraseCollectionLEGACY(ttask, src);

    if (ret_raw != NULL) {
      // Process each phrase from table
      BOOST_FOREACH(const TargetPhrase* targetPhrase, *ret_raw) {
        vector<float> raw_scores =
          targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd);

        // Phrase not in collection -> add if unrestricted or first model
        PhraseMap::iterator iter = phraseMap.find(targetPhrase);
        if (iter == phraseMap.end()) {
          if (m_restrict && i > 0) {
            continue;
          }

          // Copy phrase to avoid disrupting base model
          TargetPhrase* phrase = new TargetPhrase(*targetPhrase);
          // Correct future cost estimates and total score
          phrase->GetScoreBreakdown().InvertDenseFeatures(&pd);
          vector<FeatureFunction*> pd_feature;
          pd_feature.push_back(m_memberPDs[i]);
          const vector<FeatureFunction*> pd_feature_const(pd_feature);
          phrase->EvaluateInIsolation(src, pd_feature_const);
          // Zero out scores from original phrase table
          phrase->GetScoreBreakdown().ZeroDenseFeatures(&pd);
          // Add phrase entry
          phraseList.push_back(phrase);
          phraseMap[targetPhrase] = PDGroupPhrase(phrase, m_defaultScores, m_numModels);
        } else {
          // For existing phrases: merge extra scores (such as lr-func scores for mmsapt)
          TargetPhrase* phrase = iter->second.m_targetPhrase;
          BOOST_FOREACH(const TargetPhrase::ScoreCache_t::value_type pair, targetPhrase->GetExtraScores()) {
            phrase->SetExtraScores(pair.first, pair.second);
          }
        }
        // Don't repeat lookup if phrase already found
        PDGroupPhrase& pdgPhrase = (iter == phraseMap.end()) ? phraseMap.find(targetPhrase)->second : iter->second;

        // Copy scores from this model
        for (size_t j = 0; j < pd.GetNumScoreComponents(); ++j) {
          pdgPhrase.m_scores[offset + j] = raw_scores[j];
        }

        // Phrase seen by this model
        pdgPhrase.m_seenBy[i] = true;
      }
    }
    offset += pd.GetNumScoreComponents();
  }

  // Compute additional scores as phrases are added to return collection
  TargetPhraseCollection::shared_ptr ret(new TargetPhraseCollection);
  const vector<FeatureFunction*> pd_feature_const(m_pdFeature);
  BOOST_FOREACH(TargetPhrase* phrase, phraseList) {
    PDGroupPhrase& pdgPhrase = phraseMap.find(phrase)->second;

    // Score order (example with 2 models)
    // member1_scores member2_scores [m1_pc m2_pc] [m1_wc m2_wc]

    // Extra scores added after member model scores
    size_t offset = m_totalModelScores;
    // Phrase count (per member model)
    if (m_phraseCounts) {
      for (size_t i = 0; i < m_numModels; ++i) {
        if (pdgPhrase.m_seenBy[i]) {
          pdgPhrase.m_scores[offset + i] = 1;
        }
      }
      offset += m_numModels;
    }
    // Word count (per member model)
    if (m_wordCounts) {
      size_t wc = pdgPhrase.m_targetPhrase->GetSize();
      for (size_t i = 0; i < m_numModels; ++i) {
        if (pdgPhrase.m_seenBy[i]) {
          pdgPhrase.m_scores[offset + i] = wc;
        }
      }
      offset += m_numModels;
    }

    // Model bitmap features (one feature per possible bitmap)
    // e.g. seen by models 1 and 3 but not 2 -> "101" fires
    if (m_modelBitmapCounts) {
      // Throws exception if someone tries to combine more than 64 models
      pdgPhrase.m_scores[offset + (pdgPhrase.m_seenBy.to_ulong() - 1)] = 1;
      offset += m_seenByAll.to_ulong();
    }

    // Average other-model scores to fill in defaults when models have not seen
    // this phrase
    if (m_defaultAverageOthers) {
      // Average seen scores
      if (pdgPhrase.m_seenBy != m_seenByAll) {
        vector<float> avgScores(m_scoresPerModel, 0);
        size_t seenBy = 0;
        offset = 0;
        // sum
        for (size_t i = 0; i < m_numModels; ++i) {
          if (pdgPhrase.m_seenBy[i]) {
            for (size_t j = 0; j < m_scoresPerModel; ++j) {
              avgScores[j] += pdgPhrase.m_scores[offset + j];
            }
            seenBy += 1;
          }
          offset += m_scoresPerModel;
        }
        // divide
        for (size_t j = 0; j < m_scoresPerModel; ++j) {
          avgScores[j] /= seenBy;
        }
        // copy
        offset = 0;
        for (size_t i = 0; i < m_numModels; ++i) {
          if (!pdgPhrase.m_seenBy[i]) {
            for (size_t j = 0; j < m_scoresPerModel; ++j) {
              pdgPhrase.m_scores[offset + j] = avgScores[j];
            }
          }
          offset += m_scoresPerModel;
        }
#ifdef PT_UG
        // Also average LexicalReordering scores if specified
        // We don't necessarily have a lr-func for each model
        if (m_haveMmsaptLrFunc) {
          SPTR<Scores> avgLRScores;
          size_t seenBy = 0;
          // For each model
          for (size_t i = 0; i < m_numModels; ++i) {
            const LexicalReordering* lrFunc = *m_mmsaptLrFuncs[i];
            // Add if phrase seen and model has lr-func
            if (pdgPhrase.m_seenBy[i] && lrFunc != NULL) {
              const Scores* scores = pdgPhrase.m_targetPhrase->GetExtraScores(lrFunc);
              if (!avgLRScores) {
                avgLRScores.reset(new Scores(*scores));
              } else {
                for (size_t j = 0; j < scores->size(); ++j) {
                  (*avgLRScores)[j] += (*scores)[j];
                }
              }
              seenBy += 1;
            }
          }
          // Make sure we have at least one lr-func
          if (avgLRScores) {
            // divide
            for (size_t j = 0; j < avgLRScores->size(); ++j) {
              (*avgLRScores)[j] /= seenBy;
            }
            // set
            for (size_t i = 0; i < m_numModels; ++i) {
              const LexicalReordering* lrFunc = *m_mmsaptLrFuncs[i];
              if (!pdgPhrase.m_seenBy[i] && lrFunc != NULL) {
                pdgPhrase.m_targetPhrase->SetExtraScores(lrFunc, avgLRScores);
              }
            }
          }
        }
#endif
      }
    }

    // Assign scores
    phrase->GetScoreBreakdown().Assign(this, pdgPhrase.m_scores);
    // Correct future cost estimates and total score
    phrase->EvaluateInIsolation(src, pd_feature_const);
    ret->Add(phrase);
  }

  return ret;
}

ChartRuleLookupManager*
PhraseDictionaryGroup::
CreateRuleLookupManager(const ChartParser &,
                        const ChartCellCollectionBase&, size_t)
{
  UTIL_THROW(util::Exception, "Phrase table used in chart decoder");
}

//copied from PhraseDictionaryCompact; free memory allocated to TargetPhraseCollection (and each TargetPhrase) at end of sentence
void PhraseDictionaryGroup::CacheForCleanup(TargetPhraseCollection::shared_ptr  tpc)
{
  PhraseCache &ref = GetPhraseCache();
  ref.push_back(tpc);
}

void
PhraseDictionaryGroup::
CleanUpAfterSentenceProcessing(const InputType &source)
{
  GetPhraseCache().clear();
  CleanUpComponentModels(source);
}

void PhraseDictionaryGroup::CleanUpComponentModels(const InputType &source)
{
  for (size_t i = 0; i < m_numModels; ++i) {
    m_memberPDs[i]->CleanUpAfterSentenceProcessing(source);
  }
}

} //namespace