File size: 16,865 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "util/exception.hh"
#include "util/string_stream.hh"
#include "moses/TranslationModel/PhraseDictionaryMultiModel.h"
using namespace std;
namespace Moses
{
PhraseDictionaryMultiModel::
PhraseDictionaryMultiModel(const std::string &line)
: PhraseDictionary(line, true)
{
ReadParameters();
if (m_mode == "interpolate") {
size_t numWeights = m_numScoreComponents;
UTIL_THROW_IF2(m_pdStr.size() != m_multimodelweights.size() &&
m_pdStr.size()*numWeights != m_multimodelweights.size(),
"Number of scores and weights are not equal");
} else if (m_mode == "all" || m_mode == "all-restrict") {
UTIL_THROW2("Implementation has moved: use PhraseDictionaryGroup with restrict=true/false");
} else {
util::StringStream msg;
msg << "combination mode unknown: " << m_mode;
throw runtime_error(msg.str());
}
}
PhraseDictionaryMultiModel::
PhraseDictionaryMultiModel(int type, const std::string &line)
:PhraseDictionary(line, true)
{
if (type == 1) {
// PhraseDictionaryMultiModelCounts
UTIL_THROW_IF2(m_pdStr.size() != m_multimodelweights.size() &&
m_pdStr.size()*4 != m_multimodelweights.size(),
"Number of scores and weights are not equal");
}
}
void
PhraseDictionaryMultiModel::
SetParameter(const std::string& key, const std::string& value)
{
if (key == "mode") {
m_mode = value;
} else if (key == "components") {
m_pdStr = Tokenize(value, ",");
m_numModels = m_pdStr.size();
} else if (key == "lambda") {
m_multimodelweights = Tokenize<float>(value, ",");
} else {
PhraseDictionary::SetParameter(key, value);
}
}
PhraseDictionaryMultiModel::
~PhraseDictionaryMultiModel()
{ }
void PhraseDictionaryMultiModel::Load(AllOptions::ptr const& opts)
{
m_options = opts;
SetFeaturesToApply();
for(size_t i = 0; i < m_numModels; ++i) {
const string &ptName = m_pdStr[i];
PhraseDictionary *pt = FindPhraseDictionary(ptName);
UTIL_THROW_IF2(pt == NULL,
"Could not find component phrase table " << ptName);
m_pd.push_back(pt);
}
}
TargetPhraseCollection::shared_ptr
PhraseDictionaryMultiModel::
GetTargetPhraseCollectionLEGACY(const Phrase& src) const
{
std::vector<std::vector<float> > multimodelweights;
multimodelweights = getWeights(m_numScoreComponents, true);
TargetPhraseCollection::shared_ptr ret;
std::map<std::string, multiModelStats*>* allStats;
allStats = new(std::map<std::string,multiModelStats*>);
CollectSufficientStatistics(src, allStats);
ret = CreateTargetPhraseCollectionLinearInterpolation(src, allStats, multimodelweights);
RemoveAllInMap(*allStats);
delete allStats; // ??? Why the detour through malloc? UG
ret->NthElement(m_tableLimit); // sort the phrases for pruning later
const_cast<PhraseDictionaryMultiModel*>(this)->CacheForCleanup(ret);
return ret;
}
void
PhraseDictionaryMultiModel::
CollectSufficientStatistics
(const Phrase& src, std::map<std::string, multiModelStats*>* allStats) const
{
for(size_t i = 0; i < m_numModels; ++i) {
const PhraseDictionary &pd = *m_pd[i];
TargetPhraseCollection::shared_ptr ret_raw;
ret_raw = pd.GetTargetPhraseCollectionLEGACY(src);
if (ret_raw != NULL) {
TargetPhraseCollection::const_iterator iterTargetPhrase, iterLast;
if (m_tableLimit != 0 && ret_raw->GetSize() > m_tableLimit) {
iterLast = ret_raw->begin() + m_tableLimit;
} else {
iterLast = ret_raw->end();
}
for (iterTargetPhrase = ret_raw->begin(); iterTargetPhrase != iterLast; ++iterTargetPhrase) {
const TargetPhrase * targetPhrase = *iterTargetPhrase;
std::vector<float> raw_scores = targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd);
std::string targetString = targetPhrase->GetStringRep(m_output);
if (allStats->find(targetString) == allStats->end()) {
multiModelStats * statistics = new multiModelStats;
statistics->targetPhrase = new TargetPhrase(*targetPhrase); //make a copy so that we don't overwrite the original phrase table info
statistics->p.resize(m_numScoreComponents);
for(size_t j = 0; j < m_numScoreComponents; ++j) {
statistics->p[j].resize(m_numModels);
}
//correct future cost estimates and total score
statistics->targetPhrase->GetScoreBreakdown().InvertDenseFeatures(&pd);
vector<FeatureFunction*> pd_feature;
pd_feature.push_back(m_pd[i]);
const vector<FeatureFunction*> pd_feature_const(pd_feature);
statistics->targetPhrase->EvaluateInIsolation(src, pd_feature_const);
// zero out scores from original phrase table
statistics->targetPhrase->GetScoreBreakdown().ZeroDenseFeatures(&pd);
(*allStats)[targetString] = statistics;
}
multiModelStats * statistics = (*allStats)[targetString];
for(size_t j = 0; j < m_numScoreComponents; ++j) {
statistics->p[j][i] = UntransformScore(raw_scores[j]);
}
(*allStats)[targetString] = statistics;
}
}
}
}
TargetPhraseCollection::shared_ptr
PhraseDictionaryMultiModel::
CreateTargetPhraseCollectionLinearInterpolation
( const Phrase& src,
std::map<std::string,multiModelStats*>* allStats,
std::vector<std::vector<float> > &multimodelweights) const
{
TargetPhraseCollection::shared_ptr ret(new TargetPhraseCollection);
for ( std::map< std::string, multiModelStats*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) {
multiModelStats * statistics = iter->second;
Scores scoreVector(m_numScoreComponents);
for(size_t i = 0; i < m_numScoreComponents; ++i) {
scoreVector[i] = TransformScore(std::inner_product(statistics->p[i].begin(), statistics->p[i].end(), multimodelweights[i].begin(), 0.0));
}
statistics->targetPhrase->GetScoreBreakdown().Assign(this, scoreVector);
//correct future cost estimates and total score
vector<FeatureFunction*> pd_feature;
pd_feature.push_back(const_cast<PhraseDictionaryMultiModel*>(this));
const vector<FeatureFunction*> pd_feature_const(pd_feature);
statistics->targetPhrase->EvaluateInIsolation(src, pd_feature_const);
ret->Add(new TargetPhrase(*statistics->targetPhrase));
}
return ret;
}
//TODO: is it worth caching the results as long as weights don't change?
std::vector<std::vector<float> >
PhraseDictionaryMultiModel::
getWeights(size_t numWeights, bool normalize) const
{
const std::vector<float>* weights_ptr;
std::vector<float> raw_weights;
weights_ptr = GetTemporaryMultiModelWeightsVector();
// HIEU - uninitialised variable.
//checking weights passed to mosesserver; only valid for this sentence; *don't* raise exception if client weights are malformed
if (weights_ptr == NULL || weights_ptr->size() == 0) {
weights_ptr = &m_multimodelweights; //fall back to weights defined in config
} else if(weights_ptr->size() != m_numModels && weights_ptr->size() != m_numModels * numWeights) {
//TODO: can we pass error message to client if weights are malformed?
std::cerr << "Must have either one multimodel weight per model (" << m_numModels << "), or one per weighted feature and model (" << numWeights << "*" << m_numModels << "). You have " << weights_ptr->size() << ". Reverting to weights in config";
weights_ptr = &m_multimodelweights; //fall back to weights defined in config
}
//checking weights defined in config; only valid for this sentence; raise exception if config weights are malformed
if (weights_ptr == NULL || weights_ptr->size() == 0) {
for (size_t i=0; i < m_numModels; i++) {
raw_weights.push_back(1.0/m_numModels); //uniform weights created online
}
} else if(weights_ptr->size() != m_numModels && weights_ptr->size() != m_numModels * numWeights) {
util::StringStream strme;
strme << "Must have either one multimodel weight per model (" << m_numModels << "), or one per weighted feature and model (" << numWeights << "*" << m_numModels << "). You have " << weights_ptr->size() << ".";
UTIL_THROW(util::Exception, strme.str());
} else {
raw_weights = *weights_ptr;
}
std::vector<std::vector<float> > multimodelweights (numWeights);
for (size_t i=0; i < numWeights; i++) {
std::vector<float> weights_onefeature (m_numModels);
if(raw_weights.size() == m_numModels) {
weights_onefeature = raw_weights;
} else {
copy ( raw_weights.begin()+i*m_numModels, raw_weights.begin()+(i+1)*m_numModels, weights_onefeature.begin() );
}
if(normalize) {
multimodelweights[i] = normalizeWeights(weights_onefeature);
} else {
multimodelweights[i] = weights_onefeature;
}
}
return multimodelweights;
}
std::vector<float>
PhraseDictionaryMultiModel::
normalizeWeights(std::vector<float> &weights) const
{
std::vector<float> ret (m_numModels);
float total = std::accumulate(weights.begin(),weights.end(),0.0);
for (size_t i=0; i < weights.size(); i++) {
ret[i] = weights[i]/total;
}
return ret;
}
ChartRuleLookupManager *
PhraseDictionaryMultiModel::
CreateRuleLookupManager(const ChartParser &, const ChartCellCollectionBase&,
std::size_t)
{
UTIL_THROW(util::Exception, "Phrase table used in chart decoder");
}
//copied from PhraseDictionaryCompact; free memory allocated to TargetPhraseCollection (and each TargetPhrase) at end of sentence
void
PhraseDictionaryMultiModel::
CacheForCleanup(TargetPhraseCollection::shared_ptr tpc)
{
GetPhraseCache().push_back(tpc);
}
void
PhraseDictionaryMultiModel::
CleanUpAfterSentenceProcessing(const InputType &source)
{
// PhraseCache &ref = GetPhraseCache();
// for(PhraseCache::iterator it = ref.begin(); it != ref.end(); it++) {
// it->reset();
// }
// PhraseCache temp;
// temp.swap(ref);
GetPhraseCache().clear();
CleanUpComponentModels(source);
std::vector<float> empty_vector;
SetTemporaryMultiModelWeightsVector(empty_vector);
}
void
PhraseDictionaryMultiModel::
CleanUpComponentModels(const InputType &source)
{
for(size_t i = 0; i < m_numModels; ++i) {
m_pd[i]->CleanUpAfterSentenceProcessing(source);
}
}
const std::vector<float>*
PhraseDictionaryMultiModel::
GetTemporaryMultiModelWeightsVector() const
{
#ifdef WITH_THREADS
boost::shared_lock<boost::shared_mutex> read_lock(m_lock_weights);
if (m_multimodelweights_tmp.find(boost::this_thread::get_id()) != m_multimodelweights_tmp.end()) {
return &m_multimodelweights_tmp.find(boost::this_thread::get_id())->second;
} else {
return NULL;
}
#else
return &m_multimodelweights_tmp;
#endif
}
void
PhraseDictionaryMultiModel::
SetTemporaryMultiModelWeightsVector(std::vector<float> weights)
{
#ifdef WITH_THREADS
boost::unique_lock<boost::shared_mutex> lock(m_lock_weights);
m_multimodelweights_tmp[boost::this_thread::get_id()] = weights;
#else
m_multimodelweights_tmp = weights;
#endif
}
#ifdef WITH_DLIB
vector<float>
PhraseDictionaryMultiModel::
MinimizePerplexity(vector<pair<string, string> > &phrase_pair_vector)
{
map<pair<string, string>, size_t> phrase_pair_map;
for ( vector<pair<string, string> >::const_iterator iter = phrase_pair_vector.begin(); iter != phrase_pair_vector.end(); ++iter ) {
phrase_pair_map[*iter] += 1;
}
vector<multiModelStatsOptimization*> optimizerStats;
for ( map<pair<string, string>, size_t>::iterator iter = phrase_pair_map.begin(); iter != phrase_pair_map.end(); ++iter ) {
pair<string, string> phrase_pair = iter->first;
string source_string = phrase_pair.first;
string target_string = phrase_pair.second;
vector<float> fs(m_numModels);
map<string,multiModelStats*>* allStats = new(map<string,multiModelStats*>);
Phrase sourcePhrase(0);
sourcePhrase.CreateFromString(Input, m_input, source_string, NULL);
CollectSufficientStatistics(sourcePhrase, allStats); //optimization potential: only call this once per source phrase
//phrase pair not found; leave cache empty
if (allStats->find(target_string) == allStats->end()) {
RemoveAllInMap(*allStats);
delete allStats;
continue;
}
multiModelStatsOptimization* targetStatistics = new multiModelStatsOptimization();
targetStatistics->targetPhrase = new TargetPhrase(*(*allStats)[target_string]->targetPhrase);
targetStatistics->p = (*allStats)[target_string]->p;
targetStatistics->f = iter->second;
optimizerStats.push_back(targetStatistics);
RemoveAllInMap(*allStats);
delete allStats;
}
Sentence sentence;
CleanUpAfterSentenceProcessing(sentence); // free memory used by compact phrase tables
size_t numWeights = m_numScoreComponents;
vector<float> ret (m_numModels*numWeights);
for (size_t iFeature=0; iFeature < numWeights; iFeature++) {
CrossEntropy * ObjectiveFunction = new CrossEntropy(optimizerStats, this, iFeature);
vector<float> weight_vector = Optimize(ObjectiveFunction, m_numModels);
if (m_mode == "interpolate") {
weight_vector = normalizeWeights(weight_vector);
}
cerr << "Weight vector for feature " << iFeature << ": ";
for (size_t i=0; i < m_numModels; i++) {
ret[(iFeature*m_numModels)+i] = weight_vector[i];
cerr << weight_vector[i] << " ";
}
cerr << endl;
delete ObjectiveFunction;
}
RemoveAllInColl(optimizerStats);
return ret;
}
vector<float>
PhraseDictionaryMultiModel::
Optimize(OptimizationObjective *ObjectiveFunction, size_t numModels)
{
dlib::matrix<double,0,1> starting_point;
starting_point.set_size(numModels);
starting_point = 1.0;
try {
dlib::find_min_bobyqa(*ObjectiveFunction,
starting_point,
2*numModels+1, // number of interpolation points
dlib::uniform_matrix<double>(numModels,1, 1e-09), // lower bound constraint
dlib::uniform_matrix<double>(numModels,1, 1e100), // upper bound constraint
1.0, // initial trust region radius
1e-5, // stopping trust region radius
10000 // max number of objective function evaluations
);
} catch (dlib::bobyqa_failure& e) {
cerr << e.what() << endl;
}
vector<float> weight_vector (numModels);
for (int i=0; i < starting_point.nr(); i++) {
weight_vector[i] = starting_point(i);
}
cerr << "Cross-entropy: " << (*ObjectiveFunction)(starting_point) << endl;
return weight_vector;
}
double CrossEntropy::operator() ( const dlib::matrix<double,0,1>& arg) const
{
double total = 0.0;
double n = 0.0;
std::vector<float> weight_vector (m_model->m_numModels);
for (int i=0; i < arg.nr(); i++) {
weight_vector[i] = arg(i);
}
if (m_model->m_mode == "interpolate") {
weight_vector = m_model->normalizeWeights(weight_vector);
}
for ( std::vector<multiModelStatsOptimization*>::const_iterator iter = m_optimizerStats.begin(); iter != m_optimizerStats.end(); ++iter ) {
multiModelStatsOptimization* statistics = *iter;
size_t f = statistics->f;
double score;
score = std::inner_product(statistics->p[m_iFeature].begin(), statistics->p[m_iFeature].end(), weight_vector.begin(), 0.0);
total -= (FloorScore(TransformScore(score))/TransformScore(2))*f;
n += f;
}
return total/n;
}
#endif
PhraseDictionary *FindPhraseDictionary(const string &ptName)
{
const std::vector<PhraseDictionary*> &pts = PhraseDictionary::GetColl();
PhraseDictionary *pt = NULL;
std::vector<PhraseDictionary*>::const_iterator iter;
for (iter = pts.begin(); iter != pts.end(); ++iter) {
PhraseDictionary *currPt = *iter;
if (currPt->GetScoreProducerDescription() == ptName) {
pt = currPt;
break;
}
}
return pt;
}
} //namespace
|