File size: 7,272 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
/*
* Stack.cpp
*
* Created on: 24 Oct 2015
* Author: hieu
*/
#include <algorithm>
#include <boost/foreach.hpp>
#include "Stack.h"
#include "../Hypothesis.h"
#include "../Manager.h"
#include "../../Scores.h"
#include "../../System.h"
using namespace std;
namespace Moses2
{
namespace NSCubePruningBitmapStack
{
MiniStack::MiniStack(const Manager &mgr)
:m_coll()
,m_sortedHypos(NULL)
{}
StackAdd MiniStack::Add(const Hypothesis *hypo)
{
std::pair<_HCType::iterator, bool> addRet = m_coll.insert(hypo);
// CHECK RECOMBINATION
if (addRet.second) {
// equiv hypo doesn't exists
return StackAdd(true, NULL);
} else {
const Hypothesis *hypoExisting = *addRet.first;
if (hypo->GetScores().GetTotalScore() > hypoExisting->GetScores().GetTotalScore()) {
// incoming hypo is better than the one we have
const Hypothesis *const &hypoExisting1 = *addRet.first;
const Hypothesis *&hypoExisting2 = const_cast<const Hypothesis *&>(hypoExisting1);
hypoExisting2 = hypo;
return StackAdd(true, const_cast<Hypothesis*>(hypoExisting));
} else {
// already storing the best hypo. discard incoming hypo
return StackAdd(false, const_cast<Hypothesis*>(hypo));
}
}
assert(false);
}
Hypotheses &MiniStack::GetSortedAndPruneHypos(const Manager &mgr) const
{
if (m_sortedHypos == NULL) {
// create sortedHypos first
MemPool &pool = mgr.GetPool();
m_sortedHypos = new (pool.Allocate< Vector<const Hypothesis*> >()) Vector<const Hypothesis*>(pool, m_coll.size());
size_t ind = 0;
BOOST_FOREACH(const Hypothesis *hypo, m_coll) {
(*m_sortedHypos)[ind] = hypo;
++ind;
}
SortAndPruneHypos(mgr);
}
return *m_sortedHypos;
}
void MiniStack::SortAndPruneHypos(const Manager &mgr) const
{
size_t stackSize = mgr.system.stackSize;
Recycler<Hypothesis*> &recycler = mgr.GetHypoRecycle();
/*
cerr << "UNSORTED hypos:" << endl;
for (size_t i = 0; i < hypos.size(); ++i) {
const Hypothesis *hypo = hypos[i];
cerr << *hypo << endl;
}
cerr << endl;
*/
Hypotheses::iterator iterMiddle;
iterMiddle = (stackSize == 0 || m_sortedHypos->size() < stackSize)
? m_sortedHypos->end()
: m_sortedHypos->begin() + stackSize;
std::partial_sort(m_sortedHypos->begin(), iterMiddle, m_sortedHypos->end(),
HypothesisFutureScoreOrderer());
// prune
if (stackSize && m_sortedHypos->size() > stackSize) {
for (size_t i = stackSize; i < m_sortedHypos->size(); ++i) {
Hypothesis *hypo = const_cast<Hypothesis*>((*m_sortedHypos)[i]);
recycler.Recycle(hypo);
}
m_sortedHypos->resize(stackSize);
}
/*
cerr << "sorted hypos:" << endl;
for (size_t i = 0; i < hypos.size(); ++i) {
const Hypothesis *hypo = hypos[i];
cerr << hypo << " " << *hypo << endl;
}
cerr << endl;
*/
}
void MiniStack::Clear()
{
m_sortedHypos = NULL;
m_coll.clear();
}
///////////////////////////////////////////////////////////////
Stack::Stack(const Manager &mgr)
:m_mgr(mgr)
,m_coll()
,m_miniStackRecycler()
{
}
Stack::~Stack()
{
// TODO Auto-generated destructor stub
}
void Stack::Add(const Hypothesis *hypo, Recycler<Hypothesis*> &hypoRecycle)
{
HypoCoverageInternal key = &hypo->GetBitmap();
StackAdd added = GetMiniStack(key).Add(hypo);
if (added.toBeDeleted) {
hypoRecycle.Recycle(added.toBeDeleted);
}
}
std::vector<const Hypothesis*> Stack::GetBestHypos(size_t num) const
{
std::vector<const Hypothesis*> ret;
BOOST_FOREACH(const Coll::value_type &val, m_coll) {
const MiniStack::_HCType &hypos = val.second->GetColl();
ret.insert(ret.end(), hypos.begin(), hypos.end());
}
std::vector<const Hypothesis*>::iterator iterMiddle;
iterMiddle = (num == 0 || ret.size() < num)
? ret.end()
: ret.begin()+num;
std::partial_sort(ret.begin(), iterMiddle, ret.end(),
HypothesisFutureScoreOrderer());
return ret;
}
size_t Stack::GetHypoSize() const
{
size_t ret = 0;
BOOST_FOREACH(const Coll::value_type &val, m_coll) {
const MiniStack::_HCType &hypos = val.second->GetColl();
ret += hypos.size();
}
return ret;
}
MiniStack &Stack::GetMiniStack(const HypoCoverageInternal &key)
{
MiniStack *ret;
Coll::iterator iter = m_coll.find(key);
if (iter == m_coll.end()) {
if (m_miniStackRecycler.empty()) {
ret = new (m_mgr.GetPool().Allocate<MiniStack>()) MiniStack(m_mgr);
} else {
ret = m_miniStackRecycler.back();
ret->Clear();
m_miniStackRecycler.pop_back();
}
m_coll[key] = ret;
} else {
ret = iter->second;
}
return *ret;
}
void Stack::Clear()
{
BOOST_FOREACH(const Coll::value_type &val, m_coll) {
MiniStack *miniStack = val.second;
m_miniStackRecycler.push_back(miniStack);
}
m_coll.clear();
}
Stack::SortedHypos Stack::GetSortedAndPruneHypos(const Manager &mgr) const
{
SortedHypos ret;
MemPool &pool = mgr.GetPool();
// prune and sort
Hypotheses *allHypos = new (pool.Allocate<Hypotheses>()) Hypotheses(pool, GetHypoSize());
size_t i = 0;
BOOST_FOREACH(const Coll::value_type &val, m_coll) {
const MiniStack *miniStack = val.second;
const MiniStack::MiniStack::_HCType &hypos = miniStack->GetColl();
BOOST_FOREACH(const Hypothesis *hypo, hypos) {
(*allHypos)[i++] = hypo;
}
}
SortAndPruneHypos(mgr, *allHypos);
// divide hypos by [bitmap, last end pos]
BOOST_FOREACH(const Hypothesis *hypo, *allHypos) {
HypoCoverage key(&hypo->GetBitmap(), hypo->GetInputPath().range.GetEndPos());
Hypotheses *hypos;
SortedHypos::iterator iter;
iter = ret.find(key);
if (iter == ret.end()) {
hypos = new (pool.Allocate<Hypotheses>()) Hypotheses(pool);
ret[key] = hypos;
} else {
hypos = iter->second;
}
hypos->push_back(hypo);
}
return ret;
}
void Stack::SortAndPruneHypos(const Manager &mgr, Hypotheses &hypos) const
{
size_t stackSize = mgr.system.stackSize;
Recycler<Hypothesis*> &recycler = mgr.GetHypoRecycle();
/*
cerr << "UNSORTED hypos:" << endl;
for (size_t i = 0; i < hypos.size(); ++i) {
const Hypothesis *hypo = hypos[i];
cerr << *hypo << endl;
}
cerr << endl;
*/
Hypotheses::iterator iterMiddle;
iterMiddle = (stackSize == 0 || hypos.size() < stackSize)
? hypos.end()
: hypos.begin() + stackSize;
std::partial_sort(hypos.begin(), iterMiddle, hypos.end(),
HypothesisFutureScoreOrderer());
// prune
if (stackSize && hypos.size() > stackSize) {
for (size_t i = stackSize; i < hypos.size(); ++i) {
Hypothesis *hypo = const_cast<Hypothesis*>(hypos[i]);
recycler.Recycle(hypo);
}
hypos.resize(stackSize);
}
/*
cerr << "sorted hypos:" << endl;
for (size_t i = 0; i < hypos.size(); ++i) {
const Hypothesis *hypo = hypos[i];
cerr << hypo << " " << *hypo << endl;
}
cerr << endl;
*/
}
void Stack::DebugCounts()
{
/*
cerr << "counts=";
BOOST_FOREACH(const Coll::value_type &val, GetColl()) {
const NSCubePruning::MiniStack &miniStack = *val.second;
size_t count = miniStack.GetColl().size();
cerr << count << " ";
}
cerr << endl;
*/
}
}
}
|