File size: 16,869 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
/***********************************************************************
Moses - statistical machine translation system
Copyright (C) 2006-2011 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "PhraseOrientation.h"
#include <iostream>
#include <sstream>
#include <limits>
#include <cassert>
#include <boost/assign/list_of.hpp>
namespace MosesTraining
{
std::vector<float> PhraseOrientation::m_l2rOrientationPriorCounts = boost::assign::list_of(0)(0)(0)(0)(0);
std::vector<float> PhraseOrientation::m_r2lOrientationPriorCounts = boost::assign::list_of(0)(0)(0)(0)(0);
PhraseOrientation::PhraseOrientation(int sourceSize,
int targetSize,
const Alignment &alignment)
: m_countF(sourceSize)
, m_countE(targetSize)
{
// prepare data structures for alignments
std::vector<std::vector<int> > alignedToS;
for(int i=0; i<m_countF; ++i) {
std::vector< int > dummy;
alignedToS.push_back(dummy);
}
for(int i=0; i<m_countE; ++i) {
std::vector< int > dummy;
m_alignedToT.push_back(dummy);
}
std::vector<int> alignedCountS(m_countF,0);
for (Alignment::const_iterator a=alignment.begin(); a!=alignment.end(); ++a) {
alignedToS[a->first].push_back(a->second);
alignedCountS[a->first]++;
m_alignedToT[a->second].push_back(a->first);
}
Init(sourceSize, targetSize, m_alignedToT, alignedToS, alignedCountS);
}
PhraseOrientation::PhraseOrientation(int sourceSize,
int targetSize,
const Moses::AlignmentInfo &alignTerm,
const Moses::AlignmentInfo &alignNonTerm)
: m_countF(sourceSize)
, m_countE(targetSize)
{
// prepare data structures for alignments
std::vector<std::vector<int> > alignedToS;
for(int i=0; i<m_countF; ++i) {
std::vector< int > dummy;
alignedToS.push_back(dummy);
}
for(int i=0; i<m_countE; ++i) {
std::vector< int > dummy;
m_alignedToT.push_back(dummy);
}
std::vector<int> alignedCountS(m_countF,0);
for (Moses::AlignmentInfo::const_iterator it=alignTerm.begin();
it!=alignTerm.end(); ++it) {
alignedToS[it->first].push_back(it->second);
alignedCountS[it->first]++;
m_alignedToT[it->second].push_back(it->first);
}
for (Moses::AlignmentInfo::const_iterator it=alignNonTerm.begin();
it!=alignNonTerm.end(); ++it) {
alignedToS[it->first].push_back(it->second);
alignedCountS[it->first]++;
m_alignedToT[it->second].push_back(it->first);
}
Init(sourceSize, targetSize, m_alignedToT, alignedToS, alignedCountS);
}
PhraseOrientation::PhraseOrientation(int sourceSize,
int targetSize,
const std::vector<std::vector<int> > &alignedToT,
const std::vector<std::vector<int> > &alignedToS,
const std::vector<int> &alignedCountS)
: m_countF(sourceSize)
, m_countE(targetSize)
, m_alignedToT(alignedToT)
{
Init(sourceSize, targetSize, m_alignedToT, alignedToS, alignedCountS);
}
void PhraseOrientation::Init(int sourceSize,
int targetSize,
const std::vector<std::vector<int> > &alignedToT,
const std::vector<std::vector<int> > &alignedToS,
const std::vector<int> &alignedCountS)
{
for (int startF=0; startF<m_countF; ++startF) {
for (int endF=startF; endF<m_countF; ++endF) {
int minE = std::numeric_limits<int>::max();
int maxE = -1;
for (int fi=startF; fi<=endF; ++fi) {
for (size_t i=0; i<alignedToS[fi].size(); ++i) {
int ei = alignedToS[fi][i];
if (ei<minE) {
minE = ei;
}
if (ei>maxE) {
maxE = ei;
}
}
}
m_minAndMaxAlignedToSourceSpan[ std::pair<int,int>(startF,endF) ] = std::pair<int,int>(minE,maxE);
}
}
// check alignments for target phrase startE...endE
// loop over continuous phrases which are compatible with the word alignments
for (int startE=0; startE<m_countE; ++startE) {
for (int endE=startE; endE<m_countE; ++endE) {
int minF = std::numeric_limits<int>::max();
int maxF = -1;
std::vector< int > usedF = alignedCountS;
for (int ei=startE; ei<=endE; ++ei) {
for (size_t i=0; i<alignedToT[ei].size(); ++i) {
int fi = alignedToT[ei][i];
if (fi<minF) {
minF = fi;
}
if (fi>maxF) {
maxF = fi;
}
usedF[fi]--;
}
}
m_minAndMaxAlignedToTargetSpan[ std::pair<int,int>(startE,endE) ] = std::pair<int,int>(minF,maxF);
if (maxF >= 0) { // aligned to any source words at all
// check if source words are aligned to out of bounds target words
bool out_of_bounds = false;
for (int fi=minF; fi<=maxF && !out_of_bounds; ++fi)
if (usedF[fi]>0) {
// cout << "out of bounds: " << fi << "\n";
out_of_bounds = true;
}
// cout << "doing if for ( " << minF << "-" << maxF << ", " << startE << "," << endE << ")\n";
if (!out_of_bounds) {
// start point of source phrase may retreat over unaligned
for (int startF=minF;
(startF>=0 &&
(startF==minF || alignedCountS[startF]==0)); // unaligned
startF--) {
// end point of source phrase may advance over unaligned
for (int endF=maxF;
(endF<m_countF &&
(endF==maxF || alignedCountS[endF]==0)); // unaligned
endF++) { // at this point we have extracted a phrase
InsertPhraseVertices(m_topLeft, m_topRight, m_bottomLeft, m_bottomRight,
startF, startE, endF, endE);
}
}
}
}
}
}
}
void PhraseOrientation::InsertVertex( HSentenceVertices & corners, int x, int y )
{
std::set<int> tmp;
tmp.insert(x);
std::pair< HSentenceVertices::iterator, bool > ret = corners.insert( std::pair<int, std::set<int> > (y, tmp) );
if (ret.second == false) {
ret.first->second.insert(x);
}
}
void PhraseOrientation::InsertPhraseVertices(HSentenceVertices & topLeft,
HSentenceVertices & topRight,
HSentenceVertices & bottomLeft,
HSentenceVertices & bottomRight,
int startF, int startE, int endF, int endE)
{
InsertVertex(topLeft, startF, startE);
InsertVertex(topRight, endF, startE);
InsertVertex(bottomLeft, startF, endE);
InsertVertex(bottomRight, endF, endE);
}
const std::string PhraseOrientation::GetOrientationInfoString(int startF, int endF, REO_DIR direction) const
{
boost::unordered_map< std::pair<int,int> , std::pair<int,int> >::const_iterator foundMinMax
= m_minAndMaxAlignedToSourceSpan.find( std::pair<int,int>(startF,endF) );
if ( foundMinMax != m_minAndMaxAlignedToSourceSpan.end() ) {
int startE = (foundMinMax->second).first;
int endE = (foundMinMax->second).second;
// std::cerr << "Phrase orientation for"
// << " startF=" << startF
// << " endF=" << endF
// << " startE=" << startE
// << " endE=" << endE
// << std::endl;
return GetOrientationInfoString(startF, startE, endF, endE, direction);
} else {
std::cerr << "PhraseOrientation::GetOrientationInfoString(): Error: not able to determine phrase orientation" << std::endl;
std::exit(1);
}
}
const std::string PhraseOrientation::GetOrientationInfoString(int startF, int startE, int endF, int endE, REO_DIR direction) const
{
REO_CLASS hierPrevOrient=REO_CLASS_UNKNOWN, hierNextOrient=REO_CLASS_UNKNOWN;
if ( direction == REO_DIR_L2R || direction == REO_DIR_BIDIR )
hierPrevOrient = GetOrientationInfo(startF, startE, endF, endE, REO_DIR_L2R);
if ( direction == REO_DIR_R2L || direction == REO_DIR_BIDIR )
hierNextOrient = GetOrientationInfo(startF, startE, endF, endE, REO_DIR_R2L);
switch (direction) {
case REO_DIR_L2R:
return GetOrientationString(hierPrevOrient, REO_MODEL_TYPE_MSLR);
break;
case REO_DIR_R2L:
return GetOrientationString(hierNextOrient, REO_MODEL_TYPE_MSLR);
break;
case REO_DIR_BIDIR:
return GetOrientationString(hierPrevOrient, REO_MODEL_TYPE_MSLR) + " " + GetOrientationString(hierNextOrient, REO_MODEL_TYPE_MSLR);
break;
default:
return GetOrientationString(hierPrevOrient, REO_MODEL_TYPE_MSLR) + " " + GetOrientationString(hierNextOrient, REO_MODEL_TYPE_MSLR);
break;
}
return "PhraseOrientationERROR";
}
PhraseOrientation::REO_CLASS PhraseOrientation::GetOrientationInfo(int startF, int endF, REO_DIR direction) const
{
boost::unordered_map< std::pair<int,int> , std::pair<int,int> >::const_iterator foundMinMax
= m_minAndMaxAlignedToSourceSpan.find( std::pair<int,int>(startF,endF) );
if ( foundMinMax != m_minAndMaxAlignedToSourceSpan.end() ) {
int startE = (foundMinMax->second).first;
int endE = (foundMinMax->second).second;
// std::cerr << "Phrase orientation for"
// << " startF=" << startF
// << " endF=" << endF
// << " startE=" << startE
// << " endE=" << endE
// << std::endl;
return GetOrientationInfo(startF, startE, endF, endE, direction);
} else {
std::cerr << "PhraseOrientation::GetOrientationInfo(): Error: not able to determine phrase orientation" << std::endl;
std::exit(1);
}
}
PhraseOrientation::REO_CLASS PhraseOrientation::GetOrientationInfo(int startF, int startE, int endF, int endE, REO_DIR direction) const
{
if ( direction != REO_DIR_L2R && direction != REO_DIR_R2L ) {
std::cerr << "PhraseOrientation::GetOrientationInfo(): Error: direction should be either L2R or R2L" << std::endl;
std::exit(1);
}
if ( direction == REO_DIR_L2R )
return GetOrientHierModel(REO_MODEL_TYPE_MSLR,
startF, endF, startE, endE, m_countF-1, 0, 0, 1,
&ge, &le,
m_bottomRight, m_bottomLeft);
if ( direction == REO_DIR_R2L )
return GetOrientHierModel(REO_MODEL_TYPE_MSLR,
endF, startF, endE, startE, 0, m_countF-1, m_countE-1, -1,
&le, &ge,
m_topLeft, m_topRight);
return REO_CLASS_UNKNOWN;
}
// to be called with countF-1 instead of countF
PhraseOrientation::REO_CLASS PhraseOrientation::GetOrientHierModel(REO_MODEL_TYPE modelType,
int startF, int endF, int startE, int endE, int countF, int zeroF, int zeroE, int unit,
bool (*ge)(int, int), bool (*le)(int, int),
const HSentenceVertices & bottomRight, const HSentenceVertices & bottomLeft) const
{
bool leftSourceSpanIsAligned = ( (startF != zeroF) && SourceSpanIsAligned(zeroF,startF-unit) );
bool topTargetSpanIsAligned = ( (startE != zeroE) && TargetSpanIsAligned(zeroE,startE-unit) );
if (!topTargetSpanIsAligned && !leftSourceSpanIsAligned)
return REO_CLASS_LEFT;
HSentenceVertices::const_iterator it;
if (//(connectedLeftTop && !connectedRightTop) ||
((it = bottomRight.find(startE - unit)) != bottomRight.end() &&
it->second.find(startF-unit) != it->second.end()))
return REO_CLASS_LEFT;
if (modelType == REO_MODEL_TYPE_MONO)
return REO_CLASS_UNKNOWN;
if (//(!connectedLeftTop && connectedRightTop) ||
((it = bottomLeft.find(startE - unit)) != bottomLeft.end() &&
it->second.find(endF + unit) != it->second.end()))
return REO_CLASS_RIGHT;
if (modelType == REO_MODEL_TYPE_MSD)
return REO_CLASS_UNKNOWN;
for (int indexF=startF-2*unit; (*ge)(indexF, zeroF); indexF=indexF-unit) {
if ((it = bottomRight.find(startE - unit)) != bottomRight.end() &&
it->second.find(indexF) != it->second.end())
return REO_CLASS_DLEFT;
}
for (int indexF=endF+2*unit; (*le)(indexF, countF); indexF=indexF+unit) {
if ((it = bottomLeft.find(startE - unit)) != bottomLeft.end() &&
it->second.find(indexF) != it->second.end())
return REO_CLASS_DRIGHT;
}
return REO_CLASS_UNKNOWN;
}
bool PhraseOrientation::SourceSpanIsAligned(int index1, int index2) const
{
return SpanIsAligned(index1, index2, m_minAndMaxAlignedToSourceSpan);
}
bool PhraseOrientation::TargetSpanIsAligned(int index1, int index2) const
{
return SpanIsAligned(index1, index2, m_minAndMaxAlignedToTargetSpan);
}
bool PhraseOrientation::SpanIsAligned(int index1, int index2, const boost::unordered_map< std::pair<int,int> , std::pair<int,int> > &minAndMaxAligned) const
{
boost::unordered_map< std::pair<int,int> , std::pair<int,int> >::const_iterator itMinAndMaxAligned =
minAndMaxAligned.find(std::pair<int,int>(std::min(index1,index2),std::max(index1,index2)));
if (itMinAndMaxAligned == minAndMaxAligned.end()) {
std::cerr << "PhraseOrientation::SourceSpanIsAligned(): Error" << std::endl;
std::exit(1);
} else {
if (itMinAndMaxAligned->second.first == std::numeric_limits<int>::max()) {
return false;
}
}
return true;
}
const std::string PhraseOrientation::GetOrientationString(const REO_CLASS orient, const REO_MODEL_TYPE modelType)
{
std::ostringstream oss;
WriteOrientation(oss, orient, modelType);
return oss.str();
}
void PhraseOrientation::WriteOrientation(std::ostream& out, const REO_CLASS orient, const REO_MODEL_TYPE modelType)
{
switch(orient) {
case REO_CLASS_LEFT:
out << "mono";
break;
case REO_CLASS_RIGHT:
out << "swap";
break;
case REO_CLASS_DLEFT:
out << "dleft";
break;
case REO_CLASS_DRIGHT:
out << "dright";
break;
case REO_CLASS_UNKNOWN:
switch(modelType) {
case REO_MODEL_TYPE_MONO:
out << "nomono";
break;
case REO_MODEL_TYPE_MSD:
out << "other";
break;
case REO_MODEL_TYPE_MSLR:
out << "dleft";
break;
}
break;
}
}
bool PhraseOrientation::IsAligned(int fi, int ei) const
{
if (ei == -1 && fi == -1)
return true;
if (ei <= -1 || fi <= -1)
return false;
if (ei == m_countE && fi == m_countF)
return true;
if (ei >= m_countE || fi >= m_countF)
return false;
for (size_t i=0; i<m_alignedToT[ei].size(); ++i)
if (m_alignedToT[ei][i] == fi)
return true;
return false;
}
void PhraseOrientation::IncrementPriorCount(REO_DIR direction, REO_CLASS orient, float increment)
{
assert(direction==REO_DIR_L2R || direction==REO_DIR_R2L);
if (direction == REO_DIR_L2R) {
m_l2rOrientationPriorCounts[orient] += increment;
} else if (direction == REO_DIR_R2L) {
m_r2lOrientationPriorCounts[orient] += increment;
}
}
void PhraseOrientation::WritePriorCounts(std::ostream& out, const REO_MODEL_TYPE modelType)
{
std::map<std::string,float> l2rOrientationPriorCountsMap;
std::map<std::string,float> r2lOrientationPriorCountsMap;
for (int orient=0; orient<=REO_CLASS_UNKNOWN; ++orient) {
l2rOrientationPriorCountsMap[GetOrientationString((REO_CLASS)orient, modelType)] += m_l2rOrientationPriorCounts[orient];
}
for (int orient=0; orient<=REO_CLASS_UNKNOWN; ++orient) {
r2lOrientationPriorCountsMap[GetOrientationString((REO_CLASS)orient, modelType)] += m_r2lOrientationPriorCounts[orient];
}
for (std::map<std::string,float>::const_iterator l2rOrientationPriorCountsMapIt = l2rOrientationPriorCountsMap.begin();
l2rOrientationPriorCountsMapIt != l2rOrientationPriorCountsMap.end(); ++l2rOrientationPriorCountsMapIt) {
out << "L2R_" << l2rOrientationPriorCountsMapIt->first << " " << l2rOrientationPriorCountsMapIt->second << std::endl;
}
for (std::map<std::string,float>::const_iterator r2lOrientationPriorCountsMapIt = r2lOrientationPriorCountsMap.begin();
r2lOrientationPriorCountsMapIt != r2lOrientationPriorCountsMap.end(); ++r2lOrientationPriorCountsMapIt) {
out << "R2L_" << r2lOrientationPriorCountsMapIt->first << " " << r2lOrientationPriorCountsMapIt->second << std::endl;
}
}
} // namespace MosesTraining
|