File size: 13,339 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
/***********************************************************************
Moses - statistical machine translation system
Copyright (C) 2006-2011 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "AlignmentGraph.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <memory>
#include <stack>
#include "SyntaxTree.h"
#include "ComposedRule.h"
#include "Node.h"
#include "Options.h"
#include "Subgraph.h"
namespace MosesTraining
{
namespace Syntax
{
namespace GHKM
{
AlignmentGraph::AlignmentGraph(const SyntaxTree *t,
const std::vector<std::string> &s,
const Alignment &a)
{
// Copy the parse tree nodes and add them to m_targetNodes.
m_root = CopyParseTree(t);
// Create a node for each source word.
m_sourceNodes.reserve(s.size());
for (std::vector<std::string>::const_iterator p(s.begin());
p != s.end(); ++p) {
m_sourceNodes.push_back(new Node(*p, SOURCE));
}
// Connect source nodes to parse tree leaves according to the given word
// alignment.
std::vector<Node *> targetTreeLeaves;
GetTargetTreeLeaves(m_root, targetTreeLeaves);
for (Alignment::const_iterator p(a.begin()); p != a.end(); ++p) {
Node *src = m_sourceNodes[p->first];
Node *tgt = targetTreeLeaves[p->second];
src->AddParent(tgt);
tgt->AddChild(src);
}
// Attach unaligned source words (if any).
AttachUnalignedSourceWords();
// Populate node spans.
std::vector<Node *>::const_iterator p(m_sourceNodes.begin());
for (int i = 0; p != m_sourceNodes.end(); ++p, ++i) {
(*p)->PropagateIndex(i);
}
// Calculate complement spans.
CalcComplementSpans(m_root);
}
AlignmentGraph::~AlignmentGraph()
{
for (std::vector<Node *>::iterator p(m_sourceNodes.begin());
p != m_sourceNodes.end(); ++p) {
delete *p;
}
for (std::vector<Node *>::iterator p(m_targetNodes.begin());
p != m_targetNodes.end(); ++p) {
delete *p;
}
}
Subgraph AlignmentGraph::ComputeMinimalFrontierGraphFragment(
Node *root,
const std::set<Node *> &frontierSet)
{
std::stack<Node *> expandableNodes;
std::set<const Node *> expandedNodes;
if (root->IsSink()) {
expandedNodes.insert(root);
} else {
expandableNodes.push(root);
}
while (!expandableNodes.empty()) {
Node *n = expandableNodes.top();
expandableNodes.pop();
const std::vector<Node *> &children = n->GetChildren();
for (std::vector<Node *>::const_iterator p(children.begin());
p != children.end(); ++p) {
Node *child = *p;
if (child->IsSink()) {
expandedNodes.insert(child);
continue;
}
std::set<Node *>::const_iterator q = frontierSet.find(child);
if (q == frontierSet.end()) { //child is not from the frontier set
expandableNodes.push(child);
} else if (child->GetType() == TARGET) { // still need source word
expandableNodes.push(child);
} else {
expandedNodes.insert(child);
}
}
}
return Subgraph(root, expandedNodes);
}
void AlignmentGraph::ExtractMinimalRules(const Options &options)
{
// Determine which nodes are frontier nodes.
std::set<Node *> frontierSet;
ComputeFrontierSet(m_root, options, frontierSet);
// Form the minimal frontier graph fragment rooted at each frontier node.
std::vector<Subgraph> fragments;
fragments.reserve(frontierSet.size());
for (std::set<Node *>::iterator p(frontierSet.begin());
p != frontierSet.end(); ++p) {
Node *root = *p;
Subgraph fragment = ComputeMinimalFrontierGraphFragment(root, frontierSet);
assert(!fragment.IsTrivial());
// Can it form an SCFG rule?
// FIXME Does this exclude non-lexical unary rules?
if (root->GetType() == TREE && !root->GetSpan().empty()) {
root->AddRule(new Subgraph(fragment));
}
}
}
void AlignmentGraph::ExtractComposedRules(const Options &options)
{
ExtractComposedRules(m_root, options);
}
void AlignmentGraph::ExtractComposedRules(Node *node, const Options &options)
{
// Extract composed rules for all children first.
const std::vector<Node *> &children = node->GetChildren();
for (std::vector<Node *>::const_iterator p(children.begin());
p != children.end(); ++p) {
ExtractComposedRules(*p, options);
}
// If there is no minimal rule for this node then there are no composed
// rules.
const std::vector<const Subgraph*> &rules = node->GetRules();
assert(rules.size() <= 1);
if (rules.empty()) {
return;
}
// Construct an initial composition candidate from the minimal rule.
ComposedRule cr(*(rules[0]));
if (!cr.GetOpenAttachmentPoint()) {
// No composition possible.
return;
}
std::queue<ComposedRule> queue;
queue.push(cr);
while (!queue.empty()) {
ComposedRule cr = queue.front();
queue.pop();
const Node *attachmentPoint = cr.GetOpenAttachmentPoint();
assert(attachmentPoint);
assert(attachmentPoint != node);
// Create all possible rules by composing this node's minimal rule with the
// existing rules (both minimal and composed) rooted at the first open
// attachment point.
const std::vector<const Subgraph*> &rules = attachmentPoint->GetRules();
for (std::vector<const Subgraph*>::const_iterator p = rules.begin();
p != rules.end(); ++p) {
assert((*p)->GetRoot()->GetType() == TREE);
ComposedRule *cr2 = cr.AttemptComposition(**p, options);
if (cr2) {
node->AddRule(new Subgraph(cr2->CreateSubgraph()));
if (cr2->GetOpenAttachmentPoint()) {
queue.push(*cr2);
}
delete cr2;
}
}
// Done with this attachment point. Advance to the next, if any.
cr.CloseAttachmentPoint();
if (cr.GetOpenAttachmentPoint()) {
queue.push(cr);
}
}
}
Node *AlignmentGraph::CopyParseTree(const SyntaxTree *root)
{
NodeType nodeType = (root->IsLeaf()) ? TARGET : TREE;
std::auto_ptr<Node> n(new Node(root->value().label, nodeType));
if (nodeType == TREE) {
float score = 0.0f;
SyntaxNode::AttributeMap::const_iterator p =
root->value().attributes.find("pcfg");
if (p != root->value().attributes.end()) {
score = std::atof(p->second.c_str());
}
n->SetPcfgScore(score);
}
const std::vector<SyntaxTree *> &children = root->children();
std::vector<Node *> childNodes;
childNodes.reserve(children.size());
for (std::vector<SyntaxTree *>::const_iterator p(children.begin());
p != children.end(); ++p) {
Node *child = CopyParseTree(*p);
child->AddParent(n.get());
childNodes.push_back(child);
}
n->SetChildren(childNodes);
Node *p = n.release();
m_targetNodes.push_back(p);
return p;
}
// Recursively constructs the set of frontier nodes for the tree (or subtree)
// rooted at the given node.
void AlignmentGraph::ComputeFrontierSet(Node *root,
const Options &options,
std::set<Node *> &frontierSet) const
{
// Non-tree nodes and unaligned target subtrees are not frontier nodes (and
// nor are their descendants). See the comment for the function
// AlignmentGraph::IsFrontierNode().
if (root->GetType() != TREE || root->GetSpan().empty()) {
return;
}
if (IsFrontierNode(*root, options)) {
frontierSet.insert(root);
}
// Recursively check descendants.
const std::vector<Node *> &children = root->GetChildren();
for (std::vector<Node *>::const_iterator p(children.begin());
p != children.end(); ++p) {
ComputeFrontierSet(*p, options, frontierSet);
}
}
// Determines whether the given node is a frontier node or not. The definition
// of a frontier node differs from Galley et al's (2004) in the following ways:
//
// 1. A node with an empty span is not a frontier node (this is to exclude
// unaligned target subtrees).
// 2. Target word nodes are not frontier nodes.
// 3. Source word nodes are not frontier nodes.
// 4. Unless the --AllowUnary option is used, a node is not a frontier node if
// it has the same span as its parent.
bool AlignmentGraph::IsFrontierNode(const Node &n, const Options &options) const
{
// Don't include word nodes or unaligned target subtrees.
if (n.GetType() != TREE || n.GetSpan().empty()) {
return false;
}
// This is the original GHKM definition of a frontier node.
if (SpansIntersect(n.GetComplementSpan(), Closure(n.GetSpan()))) {
return false;
}
// Unless unary rules are explicitly allowed, we use Chung et al's (2011)
// modified defintion of a frontier node to eliminate the production of
// non-lexical unary rules.
assert(n.GetParents().size() <= 1);
if (!options.allowUnary &&
!n.GetParents().empty() &&
n.GetParents()[0]->GetSpan() == n.GetSpan()) {
return false;
}
return true;
}
void AlignmentGraph::CalcComplementSpans(Node *root)
{
Span compSpan;
std::set<Node *> siblings;
const std::vector<Node *> &parents = root->GetParents();
for (std::vector<Node *>::const_iterator p(parents.begin());
p != parents.end(); ++p) {
const Span &parentCompSpan = (*p)->GetComplementSpan();
compSpan.insert(parentCompSpan.begin(), parentCompSpan.end());
const std::vector<Node *> &c = (*p)->GetChildren();
siblings.insert(c.begin(), c.end());
}
for (std::set<Node *>::iterator p(siblings.begin());
p != siblings.end(); ++p) {
if (*p == root) {
continue;
}
const Span &siblingSpan = (*p)->GetSpan();
compSpan.insert(siblingSpan.begin(), siblingSpan.end());
}
root->SetComplementSpan(compSpan);
const std::vector<Node *> &children = root->GetChildren();
for (std::vector<Node *>::const_iterator p(children.begin());
p != children.end(); ++p) {
CalcComplementSpans(*p);
}
}
void AlignmentGraph::GetTargetTreeLeaves(Node *root,
std::vector<Node *> &leaves)
{
if (root->IsSink()) {
leaves.push_back(root);
} else {
const std::vector<Node *> &children = root->GetChildren();
for (std::vector<Node *>::const_iterator p(children.begin());
p != children.end(); ++p) {
GetTargetTreeLeaves(*p, leaves);
}
}
}
void AlignmentGraph::AttachUnalignedSourceWords()
{
// Find the unaligned source words (if any).
std::set<int> unaligned;
for (size_t i = 0; i < m_sourceNodes.size(); ++i) {
const Node &sourceNode = (*m_sourceNodes[i]);
if (sourceNode.GetParents().empty()) {
unaligned.insert(i);
}
}
// Determine the attachment point for each one and attach it.
for (std::set<int>::iterator p = unaligned.begin();
p != unaligned.end(); ++p) {
int index = *p;
Node *attachmentPoint = DetermineAttachmentPoint(index);
Node *sourceNode = m_sourceNodes[index];
attachmentPoint->AddChild(sourceNode);
sourceNode->AddParent(attachmentPoint);
}
}
Node *AlignmentGraph::DetermineAttachmentPoint(int index)
{
// Find the nearest aligned neighbour to the left, if any.
int i = index;
while (--i >= 0) {
if (!m_sourceNodes[i]->GetParents().empty()) {
break;
}
}
// No aligned neighbours to the left, so attach to the root.
if (i == -1) {
return m_root;
}
// Find the nearest aligned neighbour to the right, if any.
size_t j = index;
while (++j < m_sourceNodes.size()) {
if (!m_sourceNodes[j]->GetParents().empty()) {
break;
}
}
// No aligned neighbours to the right, so attach to the root.
if (j == m_sourceNodes.size()) {
return m_root;
}
// Construct the set of target nodes that are aligned to the left and right
// neighbours.
const std::vector<Node *> &leftParents = m_sourceNodes[i]->GetParents();
assert(!leftParents.empty());
const std::vector<Node *> &rightParents = m_sourceNodes[j]->GetParents();
assert(!rightParents.empty());
std::set<Node *> targetSet;
targetSet.insert(leftParents.begin(), leftParents.end());
targetSet.insert(rightParents.begin(), rightParents.end());
// The attachment point is the lowest common ancestor of the target word
// nodes, unless the LCA is itself a target word, in which case the LCA
// is the parent. This is to avoid including introducing new word alignments.
// It assumes that the parse tree uses preterminals for parts of speech.
Node *lca = Node::LowestCommonAncestor(targetSet.begin(), targetSet.end());
if (lca->GetType() == TARGET) {
assert(lca->GetParents().size() == 1);
return lca->GetParents()[0];
}
return lca;
}
} // namespace GHKM
} // namespace Syntax
} // namespace MosesTraining
|