File size: 7,768 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
/***********************************************************************
Moses - statistical machine translation system
Copyright (C) 2006-2011 University of Edinburgh
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************/
#include "ScfgRule.h"
#include <algorithm>
#include "Node.h"
#include "Subgraph.h"
#include "SyntaxNode.h"
#include "SyntaxNodeCollection.h"
namespace MosesTraining
{
namespace Syntax
{
namespace GHKM
{
ScfgRule::ScfgRule(const Subgraph &fragment,
const SyntaxNodeCollection *sourceNodeCollection)
: m_graphFragment(fragment)
, m_sourceLHS("X", NonTerminal)
, m_targetLHS(fragment.GetRoot()->GetLabel(), NonTerminal)
, m_pcfgScore(fragment.GetPcfgScore())
, m_hasSourceLabels(sourceNodeCollection)
{
// Source RHS
const std::set<const Node *> &leaves = fragment.GetLeaves();
std::vector<const Node *> sourceRHSNodes;
sourceRHSNodes.reserve(leaves.size());
for (std::set<const Node *>::const_iterator p(leaves.begin());
p != leaves.end(); ++p) {
const Node &leaf = **p;
if (!leaf.GetSpan().empty()) {
sourceRHSNodes.push_back(&leaf);
}
}
std::sort(sourceRHSNodes.begin(), sourceRHSNodes.end(), PartitionOrderComp);
// Build a mapping from target nodes to source-order indices, so that we
// can construct the Alignment object later.
std::map<const Node *, std::vector<int> > sourceOrder;
m_sourceRHS.reserve(sourceRHSNodes.size());
m_numberOfNonTerminals = 0;
int srcIndex = 0;
for (std::vector<const Node *>::const_iterator p(sourceRHSNodes.begin());
p != sourceRHSNodes.end(); ++p, ++srcIndex) {
const Node &sinkNode = **p;
if (sinkNode.GetType() == TREE) {
m_sourceRHS.push_back(Symbol("X", NonTerminal));
sourceOrder[&sinkNode].push_back(srcIndex);
++m_numberOfNonTerminals;
} else {
assert(sinkNode.GetType() == SOURCE);
m_sourceRHS.push_back(Symbol(sinkNode.GetLabel(), Terminal));
// Add all aligned target words to the sourceOrder map
const std::vector<Node *> &parents(sinkNode.GetParents());
for (std::vector<Node *>::const_iterator q(parents.begin());
q != parents.end(); ++q) {
if ((*q)->GetType() == TARGET) {
sourceOrder[*q].push_back(srcIndex);
}
}
}
if (sourceNodeCollection) {
// Source syntax label
PushSourceLabel(sourceNodeCollection,&sinkNode,"XRHS");
}
}
// Target RHS + alignment
std::vector<const Node *> targetLeaves;
fragment.GetTargetLeaves(targetLeaves);
m_alignment.reserve(targetLeaves.size()); // might be too much but that's OK
m_targetRHS.reserve(targetLeaves.size());
for (std::vector<const Node *>::const_iterator p(targetLeaves.begin());
p != targetLeaves.end(); ++p) {
const Node &leaf = **p;
if (leaf.GetSpan().empty()) {
// The node doesn't cover any source words, so we can only add
// terminals to the target RHS (not a non-terminal).
std::vector<std::string> targetWords(leaf.GetTargetWords());
for (std::vector<std::string>::const_iterator q(targetWords.begin());
q != targetWords.end(); ++q) {
m_targetRHS.push_back(Symbol(*q, Terminal));
}
} else if (leaf.GetType() == SOURCE) {
// Do nothing
} else {
SymbolType type = (leaf.GetType() == TREE) ? NonTerminal : Terminal;
m_targetRHS.push_back(Symbol(leaf.GetLabel(), type));
int tgtIndex = m_targetRHS.size()-1;
std::map<const Node *, std::vector<int> >::iterator q(sourceOrder.find(&leaf));
assert(q != sourceOrder.end());
std::vector<int> &sourceNodes = q->second;
for (std::vector<int>::iterator r(sourceNodes.begin());
r != sourceNodes.end(); ++r) {
int srcIndex = *r;
m_alignment.push_back(std::make_pair(srcIndex, tgtIndex));
}
}
}
if (sourceNodeCollection) {
// Source syntax label for root node (if sourceNodeCollection available)
PushSourceLabel(sourceNodeCollection,fragment.GetRoot(),"XLHS");
// All non-terminal spans (including the LHS) should have obtained a label
// (a source-side syntactic constituent label if the span matches, "XLHS" otherwise)
// assert(m_sourceLabels.size() == m_numberOfNonTerminals+1);
}
}
void ScfgRule::PushSourceLabel(const SyntaxNodeCollection *sourceNodeCollection,
const Node *node,
const std::string &nonMatchingLabel)
{
ContiguousSpan span = Closure(node->GetSpan());
if (sourceNodeCollection->HasNode(span.first,span.second)) { // does a source constituent match the span?
std::vector<SyntaxNode*> sourceLabels =
sourceNodeCollection->GetNodes(span.first,span.second);
if (!sourceLabels.empty()) {
// store the topmost matching label from the source syntax tree
m_sourceLabels.push_back(sourceLabels.back()->label);
}
} else {
// no matching source-side syntactic constituent: store nonMatchingLabel
m_sourceLabels.push_back(nonMatchingLabel);
}
}
// TODO: rather implement the method external to ScfgRule
void ScfgRule::UpdateSourceLabelCoocCounts(std::map< std::string, std::map<std::string,float>* > &coocCounts, float count) const
{
std::map<int, int> sourceToTargetNTMap;
std::map<int, int> targetToSourceNTMap;
for (Alignment::const_iterator p(m_alignment.begin());
p != m_alignment.end(); ++p) {
if ( m_sourceRHS[p->first].GetType() == NonTerminal ) {
assert(m_targetRHS[p->second].GetType() == NonTerminal);
sourceToTargetNTMap[p->first] = p->second;
}
}
size_t sourceIndex = 0;
size_t sourceNonTerminalIndex = 0;
for (std::vector<Symbol>::const_iterator p=m_sourceRHS.begin();
p != m_sourceRHS.end(); ++p, ++sourceIndex) {
if ( p->GetType() == NonTerminal ) {
const std::string &sourceLabel = m_sourceLabels[sourceNonTerminalIndex];
int targetIndex = sourceToTargetNTMap[sourceIndex];
const std::string &targetLabel = m_targetRHS[targetIndex].GetValue();
++sourceNonTerminalIndex;
std::map<std::string,float>* countMap = NULL;
std::map< std::string, std::map<std::string,float>* >::iterator iter = coocCounts.find(sourceLabel);
if ( iter == coocCounts.end() ) {
std::map<std::string,float> *newCountMap = new std::map<std::string,float>();
std::pair< std::map< std::string, std::map<std::string,float>* >::iterator, bool > inserted =
coocCounts.insert( std::pair< std::string, std::map<std::string,float>* >(sourceLabel, newCountMap) );
assert(inserted.second);
countMap = (inserted.first)->second;
} else {
countMap = iter->second;
}
std::pair< std::map<std::string,float>::iterator, bool > inserted =
countMap->insert( std::pair< std::string,float>(targetLabel, count) );
if ( !inserted.second ) {
(inserted.first)->second += count;
}
}
}
}
} // namespace GHKM
} // namespace Syntax
} // namespace MosesTraining
|