File size: 4,757 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#pragma once

#include <stack>
#include <vector>

namespace MosesTraining {
namespace Syntax {

template<typename T>
Tree<T>::~Tree() {
  for (typename std::vector<Tree *>::iterator p = children_.begin();
       p != children_.end(); ++p) {
    delete *p;
  }
}

template<typename T>
void Tree<T>::SetParents() {
  for (typename std::vector<Tree *>::iterator p = children_.begin();
       p != children_.end(); ++p) {
    (*p)->parent() = this;
    (*p)->SetParents();
  }
}

template<typename T>
std::size_t Tree<T>::Depth() const {
  std::size_t depth = 0;
  Tree *ancestor = parent_;
  while (ancestor != 0) {
    ++depth;
    ancestor = ancestor->parent_;
  }
  return depth;
}

template<typename T>
template<typename V>
class Tree<T>::PreOrderIter {
 public:
  PreOrderIter();
  PreOrderIter(V &);

  V &operator*() { return *node_; }
  V *operator->() { return node_; }

  PreOrderIter &operator++();
  PreOrderIter operator++(int);

  bool operator==(const PreOrderIter &);
  bool operator!=(const PreOrderIter &);

 private:
  // Pointer to the current node.
  V *node_;

  // Stack of indices defining the position of node_ within the child vectors
  // of its ancestors.
  std::stack<std::size_t> index_stack_;
};

template<typename T>
template<typename V>
Tree<T>::PreOrderIter<V>::PreOrderIter()
    : node_(0) {
}

template<typename T>
template<typename V>
Tree<T>::PreOrderIter<V>::PreOrderIter(V &t)
    : node_(&t) {
}

template<typename T>
template<typename V>
Tree<T>::PreOrderIter<V> &Tree<T>::PreOrderIter<V>::operator++() {
  // If the current node has children then visit the left-most child next.
  if (!node_->children().empty()) {
    index_stack_.push(0);
    node_ = node_->children()[0];
    return *this;
  }
  // Otherwise, try node's ancestors until either a node is found with a
  // sibling to the right or we reach the root (in which case the traversal
  // is complete).
  V *ancestor = node_->parent_;
  while (ancestor) {
    std::size_t index = index_stack_.top();
    index_stack_.pop();
    if (index+1 < ancestor->children_.size()) {
      index_stack_.push(index+1);
      node_ = ancestor->children()[index+1];
      return *this;
    }
    ancestor = ancestor->parent_;
  }
  node_ = 0;
  return *this;
}

template<typename T>
template<typename V>
Tree<T>::PreOrderIter<V> Tree<T>::PreOrderIter<V>::operator++(int) {
  PreOrderIter tmp(*this);
  ++*this;
  return tmp;
}

template<typename T>
template<typename V>
bool Tree<T>::PreOrderIter<V>::operator==(const PreOrderIter &rhs) {
  return node_ == rhs.node_;
}

template<typename T>
template<typename V>
bool Tree<T>::PreOrderIter<V>::operator!=(const PreOrderIter &rhs) {
  return node_ != rhs.node_;
}

template<typename T>
template<typename V>
class Tree<T>::LeafIter {
 public:
  LeafIter();
  LeafIter(V &);

  V &operator*() { return *node_; }
  V *operator->() { return node_; }

  LeafIter &operator++();
  LeafIter operator++(int);

  bool operator==(const LeafIter &);
  bool operator!=(const LeafIter &);

 private:
  // Pointer to the current node.
  V *node_;

  // Stack of indices defining the position of node_ within the child vectors
  // of its ancestors.
  std::stack<std::size_t> index_stack_;
};

template<typename T>
template<typename V>
Tree<T>::LeafIter<V>::LeafIter()
    : node_(0) {
}

template<typename T>
template<typename V>
Tree<T>::LeafIter<V>::LeafIter(V &t)
    : node_(&t) {
  // Navigate to the first leaf.
  while (!node_->IsLeaf()) {
    index_stack_.push(0);
    node_ = node_->children()[0];
  }
}

template<typename T>
template<typename V>
Tree<T>::LeafIter<V> &Tree<T>::LeafIter<V>::operator++() {
  // Try node's ancestors until either a node is found with a sibling to the
  // right or we reach the root (in which case the traversal is complete).
  V *ancestor = node_->parent_;
  while (ancestor) {
    std::size_t index = index_stack_.top();
    index_stack_.pop();
    if (index+1 < ancestor->children_.size()) {
      index_stack_.push(index+1);
      node_ = ancestor->children()[index+1];
      // Navigate to the first leaf.
      while (!node_->IsLeaf()) {
        index_stack_.push(0);
        node_ = node_->children()[0];
      }
      return *this;
    }
    ancestor = ancestor->parent_;
  }
  node_ = 0;
  return *this;
}

template<typename T>
template<typename V>
Tree<T>::LeafIter<V> Tree<T>::LeafIter<V>::operator++(int) {
  LeafIter tmp(*this);
  ++*this;
  return tmp;
}

template<typename T>
template<typename V>
bool Tree<T>::LeafIter<V>::operator==(const LeafIter &rhs) {
  return node_ == rhs.node_;
}

template<typename T>
template<typename V>
bool Tree<T>::LeafIter<V>::operator!=(const LeafIter &rhs) {
  return node_ != rhs.node_;
}

}  // namespace Syntax
}  // namespace MosesTraining