File size: 6,299 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
# compute Bleu scores with confidence intervals via boostrap resampling
# written by Ulrich Germann
#
# This file is part of moses.  Its use is licensed under the GNU Lesser General
# Public License version 2.1 or, at your option, any later version.

from argparse import ArgumentParser
import math
import os
from random import randint
import sys, gzip


def count_ngrams(snt, max_n):
    """
    Return a dictionary of ngram counts (up to length /max_n/)
    for sentence (list of words) /snt/.
    """
    ret = {}
    for i in xrange(len(snt)):
        for k in xrange(i + 1, min(i + max_n + 1, len(snt) + 1)):
            key = tuple(snt[i:k])
            ret[key] = ret.get(key, 0) + 1
    return ret


def max_counts(ng1, ng2):
    """
    Return a dicitonary of ngram counts such that
    each count is the greater of the two individual counts
    for each ngram in the input ngram count dictionaries
    /ng1/ and /ng2/.
    """
    ret = ng1.copy()
    for k, v in ng2.items():
        ret[k] = max(ret.get(k, 0), v)
    return ret


def ng_hits(hyp, ref, max_n):
    """
    Return a list of ngram counts such that each ngram count
    is the minimum of the counts in hyp and ref, up to ngram
    length /max_n/.
    """
    ret = [0 for i in xrange(max_n)]
    for ng, cnt in hyp.items():
        k = ng
        if len(k) <= max_n:
            ret[len(k) - 1] += min(cnt, ref.get(ng, 0))
    return ret


class BleuScore:
    def __init__(self, hyp, ref, max_n=4, bootstrap=1000):
        # print len(hyp.ngrams), len(ref.ngrams), "X"
        self.hits = [
            ng_hits(hyp.ngrams[i], ref.ngrams[i], max_n)
            for i in xrange(len(hyp.ngrams))]
        self.max_n = max_n
        self.hyp = hyp
        self.ref = ref
        self.lower = None
        self.upper = None
        self.median = None
        self.actual = self.score([i for i in xrange(len(hyp.snt))])
        if bootstrap:
            self.bootstrap = [self.score([randint(0, len(hyp.snt) - 1)
                                          for s in hyp.snt])
                              for i in xrange(bootstrap)]
            self.bootstrap.sort()
        else:
            self.bootstrap = [self.actual]
            pass

    def score(self, sample):
        hits = [0 for i in xrange(self.max_n)]
        self.hyplen = 0
        self.reflen = 0
        self.total = [0 for i in hits]
        for i in sample:
            self.hyplen += len(self.hyp.snt[i])
            self.reflen += len(self.ref.snt[i])
            for n in xrange(self.max_n):
                hits[n] += self.hits[i][n]
                self.total[n] += max(len(self.hyp.snt[i]) - n, 0)
                pass
        self.prec = [float(hits[n]) / self.total[n]
                     for n in xrange(self.max_n)]
        ret = sum([math.log(x) for x in self.prec]) / self.max_n
        self.BP = min(
            1, math.exp(1. - float(self.reflen) / float(self.hyplen)))
        ret += math.log(self.BP)
        return math.exp(ret)


class Document:
    def __init__(self, fname=None):
        self.fname = fname
        if fname:
            if fname[-3:] == ".gz":
                self.snt = [line.strip().split() for line in gzip.open(fname).readlines()]
            else:
                self.snt = [line.strip().split() for line in open(fname)]
                pass
            self.ngrams = [count_ngrams(snt, 4) for snt in self.snt]
            # print self.snt
        else:
            self.snt = None
            self.ngrams = None

    def merge(self, R):
        self.fname = "multi-ref"
        self.ngrams = [x for x in R[0].ngrams]
        self.snt = [x for x in R[0].snt]
        for i in xrange(len(R[0].ngrams)):
            for k in xrange(1, len(R)):
                self.ngrams[i] = max_counts(self.ngrams[i], R[k].ngrams[i])

    def update(self, hyp, R):
        for i, hyp_snt in enumerate(hyp.snt):
            clen = len(hyp_snt)
            K = 0
            for k in xrange(1, len(R)):
                k_snt = R[k].snt[i]
                assert len(R[k].snt) == len(hyp.snt), (
                    "Mismatch in number of sentences " +
                    "between reference and candidate")
                if abs(len(k_snt) - clen) == abs(len(R[K].snt[i]) - clen):
                    if len(k_snt) < len(R[K].snt[i]):
                        K = k
                elif abs(len(k_snt) - clen) < abs(len(R[K].snt[i]) - clen):
                    K = k
            self.snt[i] = R[K].snt[i]


if __name__ == "__main__":
    argparser = ArgumentParser()
    argparser.add_argument(
        "-r", "--ref", nargs='+', help="Reference translation(s).")
    argparser.add_argument(
        "-c", "--cand", nargs='+', help="Candidate translations.")
    argparser.add_argument(
        "-i", "--individual", action='store_true',
        help="Compute BLEU scores for individual references.")
    argparser.add_argument(
        "-b", "--bootstrap", type=int, default=1000,
        help="Sample size for bootstrap resampling.")
    argparser.add_argument(
        "-a", "--alpha", type=float, default=.05,
        help="1-alpha = confidence interval.")
    args = argparser.parse_args(sys.argv[1:])
    R = [Document(fname) for fname in args.ref]
    C = [Document(fname) for fname in args.cand]
    Rx = Document()  # for multi-reference BLEU
    Rx.merge(R)
    for c in C:
        # compute multi-reference BLEU
        Rx.update(c, R)
        bleu = BleuScore(c, Rx, bootstrap=args.bootstrap)
        print "%5.2f %s [%5.2f-%5.2f; %5.2f] %s" % (
            100 * bleu.actual,
            os.path.basename(Rx.fname),
            100 * bleu.bootstrap[int((args.alpha / 2) * args.bootstrap)],
            100 * bleu.bootstrap[int((1 - (args.alpha / 2)) * args.bootstrap)],
            100 * bleu.bootstrap[int(.5 * args.bootstrap)],
            c.fname)  # os.path.basename(c.fname))

        if args.individual:
            for r in R:
                bleu = BleuScore(c, r, bootstrap=args.bootstrap)
                print "  %5.2f %s" % (
                    100 * bleu.actual, os.path.basename(r.fname))
                # print bleu.prec, bleu.hyplen, bleu.reflen, bleu.BP

        # print [
        #     sum([bleu.hits[i][n] for i in xrange(len(bleu.hits))])
        #     for n in xrange(4)]