File size: 10,015 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This file is part of moses.  Its use is licensed under the GNU Lesser General
# Public License version 2.1 or, at your option, any later version.

"""Train feed-forward neural network LM with NPLM tool.

The resulting model can be used in Moses as feature function NeuralLM.
"""

from __future__ import print_function, unicode_literals

import logging
import argparse
import subprocess
import sys
import os
import codecs

# ./bilingual-lm
sys.path.append(os.path.join(sys.path[0], 'bilingual-lm'))
import train_nplm
import averageNullEmbedding


logging.basicConfig(
    format='%(asctime)s %(levelname)s: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument(
    "--working-dir", dest="working_dir", metavar="PATH")
parser.add_argument(
    "--corpus", '-text', dest="corpus_stem", metavar="PATH",
    help="Input file.")
parser.add_argument(
    "--nplm-home", dest="nplm_home", metavar="PATH", required=True,
    help="Location of NPLM.")
parser.add_argument(
    "--epochs", dest="epochs", type=int, metavar="INT",
    help="Number of training epochs (default: %(default)s).")
parser.add_argument(
    "--order", dest="order", type=int, metavar="INT",
    help="N-gram order of language model (default: %(default)s).")
parser.add_argument(
    "--minibatch-size", dest="minibatch_size", type=int, metavar="INT",
    help="Minibatch size (default: %(default)s).")
parser.add_argument(
    "--noise", dest="noise", type=int, metavar="INT",
    help="Number of noise samples for NCE (default: %(default)s).")
parser.add_argument(
    "--hidden", dest="hidden", type=int, metavar="INT",
    help=(
        "Size of hidden layer (0 for single hidden layer) "
        "(default: %(default)s)"))
parser.add_argument(
    "--input-embedding", dest="input_embedding", type=int, metavar="INT",
    help="Size of input embedding layer (default: %(default)s).")
parser.add_argument(
    "--output-embedding", dest="output_embedding", type=int, metavar="INT",
    help="Size of output embedding layer (default: %(default)s).")
parser.add_argument(
    "--threads", "-t", dest="threads", type=int, metavar="INT",
    help="Number of threads (default: %(default)s).")
parser.add_argument(
    "--output-model", dest="output_model", metavar="PATH",
    help="Name of output model (default: %(default)s).")
parser.add_argument(
    "--output-dir", dest="output_dir", metavar="PATH",
    help="Output directory (default: same as working-dir).")
parser.add_argument(
    "--config-options-file", dest="config_options_file", metavar="PATH")
parser.add_argument(
    "--log-file", dest="log_file", metavar="PATH",
    help="Log file to write to (default: %(default)s).")
parser.add_argument(
    "--validation-corpus", dest="validation_corpus", metavar="PATH",
    help="Validation file (default: %(default)s).")
parser.add_argument(
    "--activation-function", dest="activation_fn",
    choices=['identity', 'rectifier', 'tanh', 'hardtanh'],
    help="Activation function (default: %(default)s).")
parser.add_argument(
    "--learning-rate", dest="learning_rate", type=float, metavar="FLOAT",
    help="Learning rate (default: %(default)s).")
parser.add_argument(
    "--words-file", dest="words_file", metavar="PATH",
    help="Output vocabulary file (default: %(default)s).")
parser.add_argument(
    "--vocab-size", dest="vocab_size", type=int, metavar="INT",
    help="Vocabulary size (default: %(default)s).")
parser.add_argument(
    "--mmap", dest="mmap", action="store_true",
    help="Use memory-mapped file (for lower memory consumption).")
parser.add_argument(
    "--dropout", dest="dropout", action="store",
    help="Pass dropout to nplm")
parser.add_argument(
  "--input-dropout", dest="input_dropout", action="store",
    help="Pass input dropout to nplm")
parser.add_argument(
    "--extra-settings", dest="extra_settings",
    help="Extra settings for nplm")
parser.add_argument(
    "--train-host", dest="train_host",
    help="Execute nplm training on this host, via ssh")

parser.set_defaults(
    working_dir="working",
    corpus_stem="train",
    nplm_home="/home/bhaddow/tools/nplm",
    epochs=2,
    order=5,
    minibatch_size=1000,
    noise=100,
    hidden=0,
    input_embedding=150,
    output_embedding=750,
    threads=4,
    output_model="train",
    output_dir=None,
    config_options_file="config",
    log_file="log",
    validation_corpus=None,
    activation_fn="rectifier",
    learning_rate=1,
    words_file='vocab',
    vocab_size=500000)


def main(options):

    options.ngram_size = options.order

    if options.output_dir is None:
        options.output_dir = options.working_dir
    # Create dirs if necessary
    if not os.path.exists(options.working_dir):
        os.makedirs(options.working_dir)
    if not os.path.exists(options.output_dir):
        os.makedirs(options.output_dir)

    numberized_file = os.path.basename(options.corpus_stem) + '.numberized'
    vocab_file =os.path.join(options.working_dir, options.words_file) 
    train_file = numberized_file
    if options.mmap:
        train_file += '.mmap'

    extraction_cmd = []
    if options.train_host:
      extraction_cmd = ["ssh", options.train_host]
    extraction_cmd += [
        os.path.join(options.nplm_home, 'src', 'prepareNeuralLM'),
        '--train_text', options.corpus_stem,
        '--ngramize', '1',
        '--ngram_size', str(options.ngram_size),
        '--vocab_size', str(options.vocab_size),
        '--write_words_file', vocab_file,
        '--train_file', os.path.join(options.working_dir, numberized_file)
        ]

    sys.stderr.write('extracting n-grams\n')
    sys.stderr.write('executing: ' + ', '.join(extraction_cmd) + '\n')
    subprocess.check_call(extraction_cmd)

    # if dropout enabled, need to check which is the <null> vocab id
    null_id = None
    if options.dropout or options.input_dropout:
      with open(vocab_file) as vfh:
        for i,line in enumerate(vfh):
          if line[:-1].decode("utf8") == "<null>":
            null_id = i
            break
      if null_id == None:
        sys.stderr.write("WARN: could not identify null token, cannot enable dropout\n")
      else:
        if not options.extra_settings:
          options.extra_settings = ""
        if options.dropout or options.input_dropout:
          options.extra_settings += " --null_index %d " % null_id
        if options.dropout:
          options.extra_settings += " --dropout %s " % options.dropout
        if options.input_dropout:
          options.extra_settings += " --input_dropout %s " % options.input_dropout


    if options.mmap:
        try:
            os.remove(os.path.join(options.working_dir, train_file))
        except OSError:
            pass
        mmap_cmd = []
        if options.train_host:
          mmap_cmd = ["ssh", options.train_host]
        mmap_cmd += [
            os.path.join(options.nplm_home, 'src', 'createMmap'),
            '--input_file',
            os.path.join(options.working_dir, numberized_file),
            '--output_file',
            os.path.join(options.working_dir, train_file)
            ]
        sys.stderr.write('creating memory-mapped file\n')
        sys.stderr.write('executing: ' + ', '.join(mmap_cmd) + '\n')
        ret = subprocess.call(mmap_cmd)
        if ret:
            raise Exception("creating memory-mapped file failed")

    if options.validation_corpus:

        extraction_cmd = []
        if options.train_host:
          extraction_cmd = ["ssh", options.train_host]
        extraction_cmd += [
            os.path.join(options.nplm_home, 'src', 'prepareNeuralLM'),
            '--train_text', options.validation_corpus,
            '--ngramize', '1',
            '--ngram_size', str(options.ngram_size),
            '--vocab_size', str(options.vocab_size),
            '--words_file', vocab_file,
            '--train_file', os.path.join(
                options.working_dir,
                os.path.basename(options.validation_corpus) + '.numberized')
            ]

        sys.stderr.write('extracting n-grams (validation file)\n')
        sys.stderr.write('executing: ' + ', '.join(extraction_cmd) + '\n')
        ret = subprocess.call(extraction_cmd)
        if ret:
            raise Exception("preparing neural LM failed")
        options.validation_file = os.path.join(
            options.working_dir, os.path.basename(options.validation_corpus))

    else:
        options.validation_file = None

    options.input_words_file = vocab_file
    options.output_words_file = vocab_file
    options.input_vocab_size = options.vocab_size
    options.output_vocab_size = options.vocab_size

    sys.stderr.write('training neural network\n')
    train_nplm.main(options)

    sys.stderr.write('averaging null words\n')
    output_model_file = os.path.join(
              options.output_dir,
              options.output_model + '.model.nplm.best')
    if not os.path.exists(output_model_file):
      output_model_file =  os.path.join(
              options.output_dir,
              options.output_model + '.model.nplm.' + str(options.epochs))
    average_options = averageNullEmbedding.parser.parse_args([
        '-i', output_model_file ,
        '-o', os.path.join(
            options.output_dir, options.output_model + '.model.nplm'),
        '-t', os.path.join(options.working_dir, numberized_file),
        '-p', os.path.join(options.nplm_home, 'python'),
    ])
    averageNullEmbedding.main(average_options)


if __name__ == "__main__":
    if sys.version_info < (3, 0):
        sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
        sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
        sys.stdin = codecs.getreader('UTF-8')(sys.stdin)

    options = parser.parse_known_args()[0]
    if parser.parse_known_args()[1]:
        sys.stderr.write(
            "Warning: unknown arguments: {0}\n".format(
                parser.parse_known_args()[1]))
    main(options)