File size: 10,015 Bytes
158b61b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This file is part of moses. Its use is licensed under the GNU Lesser General
# Public License version 2.1 or, at your option, any later version.
"""Train feed-forward neural network LM with NPLM tool.
The resulting model can be used in Moses as feature function NeuralLM.
"""
from __future__ import print_function, unicode_literals
import logging
import argparse
import subprocess
import sys
import os
import codecs
# ./bilingual-lm
sys.path.append(os.path.join(sys.path[0], 'bilingual-lm'))
import train_nplm
import averageNullEmbedding
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument(
"--working-dir", dest="working_dir", metavar="PATH")
parser.add_argument(
"--corpus", '-text', dest="corpus_stem", metavar="PATH",
help="Input file.")
parser.add_argument(
"--nplm-home", dest="nplm_home", metavar="PATH", required=True,
help="Location of NPLM.")
parser.add_argument(
"--epochs", dest="epochs", type=int, metavar="INT",
help="Number of training epochs (default: %(default)s).")
parser.add_argument(
"--order", dest="order", type=int, metavar="INT",
help="N-gram order of language model (default: %(default)s).")
parser.add_argument(
"--minibatch-size", dest="minibatch_size", type=int, metavar="INT",
help="Minibatch size (default: %(default)s).")
parser.add_argument(
"--noise", dest="noise", type=int, metavar="INT",
help="Number of noise samples for NCE (default: %(default)s).")
parser.add_argument(
"--hidden", dest="hidden", type=int, metavar="INT",
help=(
"Size of hidden layer (0 for single hidden layer) "
"(default: %(default)s)"))
parser.add_argument(
"--input-embedding", dest="input_embedding", type=int, metavar="INT",
help="Size of input embedding layer (default: %(default)s).")
parser.add_argument(
"--output-embedding", dest="output_embedding", type=int, metavar="INT",
help="Size of output embedding layer (default: %(default)s).")
parser.add_argument(
"--threads", "-t", dest="threads", type=int, metavar="INT",
help="Number of threads (default: %(default)s).")
parser.add_argument(
"--output-model", dest="output_model", metavar="PATH",
help="Name of output model (default: %(default)s).")
parser.add_argument(
"--output-dir", dest="output_dir", metavar="PATH",
help="Output directory (default: same as working-dir).")
parser.add_argument(
"--config-options-file", dest="config_options_file", metavar="PATH")
parser.add_argument(
"--log-file", dest="log_file", metavar="PATH",
help="Log file to write to (default: %(default)s).")
parser.add_argument(
"--validation-corpus", dest="validation_corpus", metavar="PATH",
help="Validation file (default: %(default)s).")
parser.add_argument(
"--activation-function", dest="activation_fn",
choices=['identity', 'rectifier', 'tanh', 'hardtanh'],
help="Activation function (default: %(default)s).")
parser.add_argument(
"--learning-rate", dest="learning_rate", type=float, metavar="FLOAT",
help="Learning rate (default: %(default)s).")
parser.add_argument(
"--words-file", dest="words_file", metavar="PATH",
help="Output vocabulary file (default: %(default)s).")
parser.add_argument(
"--vocab-size", dest="vocab_size", type=int, metavar="INT",
help="Vocabulary size (default: %(default)s).")
parser.add_argument(
"--mmap", dest="mmap", action="store_true",
help="Use memory-mapped file (for lower memory consumption).")
parser.add_argument(
"--dropout", dest="dropout", action="store",
help="Pass dropout to nplm")
parser.add_argument(
"--input-dropout", dest="input_dropout", action="store",
help="Pass input dropout to nplm")
parser.add_argument(
"--extra-settings", dest="extra_settings",
help="Extra settings for nplm")
parser.add_argument(
"--train-host", dest="train_host",
help="Execute nplm training on this host, via ssh")
parser.set_defaults(
working_dir="working",
corpus_stem="train",
nplm_home="/home/bhaddow/tools/nplm",
epochs=2,
order=5,
minibatch_size=1000,
noise=100,
hidden=0,
input_embedding=150,
output_embedding=750,
threads=4,
output_model="train",
output_dir=None,
config_options_file="config",
log_file="log",
validation_corpus=None,
activation_fn="rectifier",
learning_rate=1,
words_file='vocab',
vocab_size=500000)
def main(options):
options.ngram_size = options.order
if options.output_dir is None:
options.output_dir = options.working_dir
# Create dirs if necessary
if not os.path.exists(options.working_dir):
os.makedirs(options.working_dir)
if not os.path.exists(options.output_dir):
os.makedirs(options.output_dir)
numberized_file = os.path.basename(options.corpus_stem) + '.numberized'
vocab_file =os.path.join(options.working_dir, options.words_file)
train_file = numberized_file
if options.mmap:
train_file += '.mmap'
extraction_cmd = []
if options.train_host:
extraction_cmd = ["ssh", options.train_host]
extraction_cmd += [
os.path.join(options.nplm_home, 'src', 'prepareNeuralLM'),
'--train_text', options.corpus_stem,
'--ngramize', '1',
'--ngram_size', str(options.ngram_size),
'--vocab_size', str(options.vocab_size),
'--write_words_file', vocab_file,
'--train_file', os.path.join(options.working_dir, numberized_file)
]
sys.stderr.write('extracting n-grams\n')
sys.stderr.write('executing: ' + ', '.join(extraction_cmd) + '\n')
subprocess.check_call(extraction_cmd)
# if dropout enabled, need to check which is the <null> vocab id
null_id = None
if options.dropout or options.input_dropout:
with open(vocab_file) as vfh:
for i,line in enumerate(vfh):
if line[:-1].decode("utf8") == "<null>":
null_id = i
break
if null_id == None:
sys.stderr.write("WARN: could not identify null token, cannot enable dropout\n")
else:
if not options.extra_settings:
options.extra_settings = ""
if options.dropout or options.input_dropout:
options.extra_settings += " --null_index %d " % null_id
if options.dropout:
options.extra_settings += " --dropout %s " % options.dropout
if options.input_dropout:
options.extra_settings += " --input_dropout %s " % options.input_dropout
if options.mmap:
try:
os.remove(os.path.join(options.working_dir, train_file))
except OSError:
pass
mmap_cmd = []
if options.train_host:
mmap_cmd = ["ssh", options.train_host]
mmap_cmd += [
os.path.join(options.nplm_home, 'src', 'createMmap'),
'--input_file',
os.path.join(options.working_dir, numberized_file),
'--output_file',
os.path.join(options.working_dir, train_file)
]
sys.stderr.write('creating memory-mapped file\n')
sys.stderr.write('executing: ' + ', '.join(mmap_cmd) + '\n')
ret = subprocess.call(mmap_cmd)
if ret:
raise Exception("creating memory-mapped file failed")
if options.validation_corpus:
extraction_cmd = []
if options.train_host:
extraction_cmd = ["ssh", options.train_host]
extraction_cmd += [
os.path.join(options.nplm_home, 'src', 'prepareNeuralLM'),
'--train_text', options.validation_corpus,
'--ngramize', '1',
'--ngram_size', str(options.ngram_size),
'--vocab_size', str(options.vocab_size),
'--words_file', vocab_file,
'--train_file', os.path.join(
options.working_dir,
os.path.basename(options.validation_corpus) + '.numberized')
]
sys.stderr.write('extracting n-grams (validation file)\n')
sys.stderr.write('executing: ' + ', '.join(extraction_cmd) + '\n')
ret = subprocess.call(extraction_cmd)
if ret:
raise Exception("preparing neural LM failed")
options.validation_file = os.path.join(
options.working_dir, os.path.basename(options.validation_corpus))
else:
options.validation_file = None
options.input_words_file = vocab_file
options.output_words_file = vocab_file
options.input_vocab_size = options.vocab_size
options.output_vocab_size = options.vocab_size
sys.stderr.write('training neural network\n')
train_nplm.main(options)
sys.stderr.write('averaging null words\n')
output_model_file = os.path.join(
options.output_dir,
options.output_model + '.model.nplm.best')
if not os.path.exists(output_model_file):
output_model_file = os.path.join(
options.output_dir,
options.output_model + '.model.nplm.' + str(options.epochs))
average_options = averageNullEmbedding.parser.parse_args([
'-i', output_model_file ,
'-o', os.path.join(
options.output_dir, options.output_model + '.model.nplm'),
'-t', os.path.join(options.working_dir, numberized_file),
'-p', os.path.join(options.nplm_home, 'python'),
])
averageNullEmbedding.main(average_options)
if __name__ == "__main__":
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
options = parser.parse_known_args()[0]
if parser.parse_known_args()[1]:
sys.stderr.write(
"Warning: unknown arguments: {0}\n".format(
parser.parse_known_args()[1]))
main(options)
|