File size: 4,678 Bytes
158b61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
#
# This file is part of moses.  Its use is licensed under the GNU Lesser General
# Public License version 2.1 or, at your option, any later version.

"""
(Hacky) wrapper around Stanford CoreNLP to produce CoNLL dependency format.
Assumes tokenized and sentence-split text.

To get Moses XML format, first projectivize the trees, then use
conll2mosesxml.py.
"""

from __future__ import print_function, unicode_literals
import os
import sys
import codecs
import argparse

from subprocess import Popen, PIPE

# hack for python2/3 compatibility
from io import open
argparse.open = open


def create_parser():
    parser = argparse.ArgumentParser(
        description=(
            """Wrapper around Stanford CoreNLP to produce CoNLL dependency format.
            Assumes that text is tokenized and has one sentence per line."""))

    parser.add_argument(
        '--stanford', type=str,
        metavar='PATH', required=True,
        help='path to Stanford CoreNLP')

    parser.add_argument(
        '--java', type=str, default='java',
        metavar='PATH',
        help='path to java executable')

    parser.add_argument(
        '--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
        metavar='PATH',
        help="Input text (default: standard input).")
    parser.add_argument(
        '--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
        metavar='PATH',
        help="Output text (default: standard output).")

    return parser


def process_stanford(infile, javacmd, stanfordpath):

    corenlp_jar = os.path.join(stanfordpath, 'stanford-corenlp-3.5.0.jar')
    corenlp_models_jar = os.path.join(
        stanfordpath, 'stanford-corenlp-3.5.0-models.jar')
    stanford = Popen(
        [
            javacmd,
            '-cp', "%s:%s" % (corenlp_jar, corenlp_models_jar),
            'edu.stanford.nlp.pipeline.StanfordCoreNLP',
            '-annotators', 'tokenize, ssplit, pos, depparse, lemma',
            '-ssplit.eolonly', 'true',
            '-tokenize.whitespace', 'true',
            '-numThreads', '8',
            '-textFile', '-',
            'outFile', '-',
        ],
        stdin=infile, stdout=PIPE)
    return stanford.stdout


def get_sentences(instream):
    sentence = []
    expect = 0

    for line in instream:
        if expect == 0 and line.startswith('Sentence #'):
            if sentence:
                yield sentence
            sentence = []
            expect = 1

        elif line == '\n':
            expect = 0

        elif expect == 3:
            rel, remainder = line.split('(')
            head, dep = remainder.split()
            head_int = int(head.split('-')[-1][:-1])
            dep_int = int(dep.split('-')[-1][:-1])
            sentence[dep_int - 1]['head'] = head_int
            sentence[dep_int - 1]['label'] = rel

        elif expect == 2:
            linesplit = line.split('[', 1)[1].rsplit(']', 1)[0].split('] [')
            if len(linesplit) != len(sentence):
                sys.stderr.write(
                    "Warning: mismatch in number of words in sentence\n")
                sys.stderr.write(' '.join(w['word'] for w in sentence))
                for i in range(len(sentence)):
                    sentence[i]['pos'] = '-'
                    sentence[i]['lemma'] = '-'
                    sentence[i]['head'] = 0
                    sentence[i]['label'] = '-'
                expect = 0
                continue
            for i, w in enumerate(linesplit):
                sentence[i]['pos'] = w.split(' PartOfSpeech=')[-1].split()[0]
                sentence[i]['lemma'] = w.split(' Lemma=')[-1]
            expect = 3

        elif expect == 1:
            for w in line.split():
                sentence.append({'word': w})
            expect = 2

    if sentence:
        yield sentence


def write(sentence, outstream):
    for i, w in enumerate(sentence):
        outstream.write(
            '{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\n'.format(
                i + 1, w['word'], w['lemma'], w['pos'], w['pos'], '-',
                w['head'], w['label']))


if __name__ == '__main__':
    if sys.version_info < (3, 0):
        sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
        sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
        sys.stdin = codecs.getreader('UTF-8')(sys.stdin)

    parser = create_parser()
    options = parser.parse_args()

    stanford = process_stanford(options.input, options.java, options.stanford)
    for sentence in get_sentences(codecs.getreader('UTF-8')(stanford)):
        write(sentence, options.output)
        options.output.write('\n')