NMTKD / translation /OpenNMT-py /onmt /bin /average_models.py
sakharamg's picture
Uploading all files
158b61b
#!/usr/bin/env python
import argparse
import torch
def average_models(model_files, fp32=False):
vocab = None
opt = None
avg_model = None
avg_generator = None
for i, model_file in enumerate(model_files):
m = torch.load(model_file, map_location='cpu')
model_weights = m['model']
generator_weights = m['generator']
if fp32:
for k, v in model_weights.items():
model_weights[k] = v.float()
for k, v in generator_weights.items():
generator_weights[k] = v.float()
if i == 0:
vocab, opt = m['vocab'], m['opt']
avg_model = model_weights
avg_generator = generator_weights
else:
for (k, v) in avg_model.items():
avg_model[k].mul_(i).add_(model_weights[k]).div_(i + 1)
for (k, v) in avg_generator.items():
avg_generator[k].mul_(i).add_(generator_weights[k]).div_(i + 1)
final = {"vocab": vocab, "opt": opt, "optim": None,
"generator": avg_generator, "model": avg_model}
return final
def main():
parser = argparse.ArgumentParser(description="")
parser.add_argument("-models", "-m", nargs="+", required=True,
help="List of models")
parser.add_argument("-output", "-o", required=True,
help="Output file")
parser.add_argument("-fp32", "-f", action="store_true",
help="Cast params to float32")
opt = parser.parse_args()
final = average_models(opt.models, opt.fp32)
torch.save(final, opt.output)
if __name__ == "__main__":
main()