|
""" |
|
Implementation of "Convolutional Sequence to Sequence Learning" |
|
""" |
|
import torch.nn as nn |
|
|
|
from onmt.encoders.encoder import EncoderBase |
|
from onmt.utils.cnn_factory import shape_transform, StackedCNN |
|
|
|
SCALE_WEIGHT = 0.5 ** 0.5 |
|
|
|
|
|
class CNNEncoder(EncoderBase): |
|
"""Encoder based on "Convolutional Sequence to Sequence Learning" |
|
:cite:`DBLP:journals/corr/GehringAGYD17`. |
|
""" |
|
|
|
def __init__(self, num_layers, hidden_size, |
|
cnn_kernel_width, dropout, embeddings): |
|
super(CNNEncoder, self).__init__() |
|
|
|
self.embeddings = embeddings |
|
input_size = embeddings.embedding_size |
|
self.linear = nn.Linear(input_size, hidden_size) |
|
self.cnn = StackedCNN(num_layers, hidden_size, |
|
cnn_kernel_width, dropout) |
|
|
|
@classmethod |
|
def from_opt(cls, opt, embeddings): |
|
"""Alternate constructor.""" |
|
return cls( |
|
opt.enc_layers, |
|
opt.enc_rnn_size, |
|
opt.cnn_kernel_width, |
|
opt.dropout[0] if type(opt.dropout) is list else opt.dropout, |
|
embeddings) |
|
|
|
def forward(self, input, lengths=None, hidden=None): |
|
"""See :class:`onmt.modules.EncoderBase.forward()`""" |
|
self._check_args(input, lengths, hidden) |
|
|
|
emb = self.embeddings(input) |
|
|
|
|
|
emb = emb.transpose(0, 1).contiguous() |
|
emb_reshape = emb.view(emb.size(0) * emb.size(1), -1) |
|
emb_remap = self.linear(emb_reshape) |
|
emb_remap = emb_remap.view(emb.size(0), emb.size(1), -1) |
|
emb_remap = shape_transform(emb_remap) |
|
out = self.cnn(emb_remap) |
|
|
|
return emb_remap.squeeze(3).transpose(0, 1).contiguous(), \ |
|
out.squeeze(3).transpose(0, 1).contiguous(), lengths |
|
|
|
def update_dropout(self, dropout): |
|
self.cnn.dropout.p = dropout |
|
|