|
import unittest |
|
from onmt.translate.greedy_search import GreedySearch |
|
|
|
import torch |
|
|
|
|
|
class GlobalScorerStub(object): |
|
alpha = 0 |
|
beta = 0 |
|
|
|
def __init__(self): |
|
self.length_penalty = lambda x, alpha: 1. |
|
self.cov_penalty = lambda cov, beta: torch.zeros( |
|
(1, cov.shape[-2]), device=cov.device, dtype=torch.float) |
|
self.has_cov_pen = False |
|
self.has_len_pen = False |
|
|
|
def update_global_state(self, beam): |
|
pass |
|
|
|
def score(self, beam, scores): |
|
return scores |
|
|
|
|
|
class TestGreedySearch(unittest.TestCase): |
|
BATCH_SZ = 3 |
|
INP_SEQ_LEN = 53 |
|
DEAD_SCORE = -1e20 |
|
|
|
BLOCKED_SCORE = -10e20 |
|
|
|
def test_doesnt_predict_eos_if_shorter_than_min_len(self): |
|
|
|
|
|
for batch_sz in [1, 3]: |
|
n_words = 100 |
|
_non_eos_idxs = [47] |
|
valid_score_dist = torch.log_softmax(torch.tensor( |
|
[6., 5.]), dim=0) |
|
min_length = 5 |
|
eos_idx = 2 |
|
lengths = torch.randint(0, 30, (batch_sz,)) |
|
samp = GreedySearch( |
|
0, 1, 2, 3, batch_sz, GlobalScorerStub(), min_length, |
|
False, set(), False, 30, 1., 1, 0, 1, False) |
|
samp.initialize(torch.zeros((1, 1)), lengths) |
|
all_attns = [] |
|
for i in range(min_length + 4): |
|
word_probs = torch.full( |
|
(batch_sz, n_words), -float('inf')) |
|
|
|
word_probs[0, eos_idx] = valid_score_dist[0] |
|
|
|
|
|
word_probs[0, _non_eos_idxs[0]] = valid_score_dist[1] |
|
word_probs[1:, _non_eos_idxs[0] + i] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
all_attns.append(attns) |
|
samp.advance(word_probs, attns) |
|
if i < min_length: |
|
self.assertTrue( |
|
samp.topk_scores[0].allclose(valid_score_dist[1])) |
|
self.assertTrue( |
|
samp.topk_scores[1:].eq(0).all()) |
|
elif i == min_length: |
|
|
|
self.assertTrue(samp.is_finished[0, :].eq(1).all()) |
|
self.assertTrue(samp.is_finished[1:, 1:].eq(0).all()) |
|
else: |
|
break |
|
|
|
def test_returns_correct_scores_deterministic(self): |
|
for batch_sz in [1, 13]: |
|
for temp in [1., 3.]: |
|
n_words = 100 |
|
_non_eos_idxs = [47, 51, 13, 88, 99] |
|
valid_score_dist_1 = torch.log_softmax(torch.tensor( |
|
[6., 5., 4., 3., 2., 1.]), dim=0) |
|
valid_score_dist_2 = torch.log_softmax(torch.tensor( |
|
[6., 1.]), dim=0) |
|
eos_idx = 2 |
|
lengths = torch.randint(0, 30, (batch_sz,)) |
|
samp = GreedySearch( |
|
0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, |
|
False, set(), False, 30, temp, 1, 0, 1, False) |
|
samp.initialize(torch.zeros((1, 1)), lengths) |
|
|
|
i = 0 |
|
word_probs = torch.full( |
|
(batch_sz, n_words), -float('inf')) |
|
|
|
word_probs[0, eos_idx] = valid_score_dist_1[0] |
|
|
|
|
|
word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] |
|
word_probs[1:, _non_eos_idxs[0] + i] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
self.assertTrue(samp.is_finished[0].eq(1).all()) |
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[0]], |
|
[valid_score_dist_1[0] / temp]) |
|
if batch_sz == 1: |
|
self.assertTrue(samp.done) |
|
continue |
|
else: |
|
self.assertFalse(samp.done) |
|
|
|
|
|
i = 1 |
|
word_probs = torch.full( |
|
(batch_sz - 1, n_words), -float('inf')) |
|
|
|
word_probs[7, eos_idx] = valid_score_dist_2[0] |
|
word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
|
|
self.assertTrue(samp.is_finished[7].eq(1).all()) |
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[8]], |
|
[valid_score_dist_2[0] / temp]) |
|
|
|
|
|
i = 2 |
|
word_probs = torch.full( |
|
(batch_sz - 2, n_words), -float('inf')) |
|
|
|
word_probs[:, eos_idx] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
|
|
self.assertTrue(samp.is_finished.eq(1).all()) |
|
samp.update_finished() |
|
self.assertTrue(samp.done) |
|
|
|
def test_returns_correct_scores_non_deterministic(self): |
|
for batch_sz in [1, 13]: |
|
for temp in [1., 3.]: |
|
n_words = 100 |
|
_non_eos_idxs = [47, 51, 13, 88, 99] |
|
valid_score_dist_1 = torch.log_softmax(torch.tensor( |
|
[6., 5., 4., 3., 2., 1.]), dim=0) |
|
valid_score_dist_2 = torch.log_softmax(torch.tensor( |
|
[6., 1.]), dim=0) |
|
eos_idx = 2 |
|
lengths = torch.randint(0, 30, (batch_sz,)) |
|
samp = GreedySearch( |
|
0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, |
|
False, set(), False, 30, temp, 2, 0, 1, False) |
|
samp.initialize(torch.zeros((1, 1)), lengths) |
|
|
|
i = 0 |
|
for _ in range(100): |
|
word_probs = torch.full( |
|
(batch_sz, n_words), -float('inf')) |
|
|
|
word_probs[0, eos_idx] = valid_score_dist_1[0] |
|
|
|
|
|
word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] |
|
word_probs[1:, _non_eos_idxs[0] + i] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished[0].eq(1).all(): |
|
break |
|
else: |
|
self.fail("Batch 0 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
samp.update_finished() |
|
self.assertEqual( |
|
[samp.topk_scores[0]], [valid_score_dist_1[0] / temp]) |
|
if batch_sz == 1: |
|
self.assertTrue(samp.done) |
|
continue |
|
else: |
|
self.assertFalse(samp.done) |
|
|
|
|
|
i = 1 |
|
for _ in range(100): |
|
word_probs = torch.full( |
|
(batch_sz - 1, n_words), -float('inf')) |
|
|
|
word_probs[7, eos_idx] = valid_score_dist_2[0] |
|
word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished[7].eq(1).all(): |
|
break |
|
else: |
|
self.fail("Batch 8 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
|
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[8]], |
|
[valid_score_dist_2[0] / temp]) |
|
|
|
|
|
i = 2 |
|
for _ in range(250): |
|
word_probs = torch.full( |
|
(samp.alive_seq.shape[0], n_words), -float('inf')) |
|
|
|
word_probs[:, eos_idx] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished.any(): |
|
samp.update_finished() |
|
if samp.is_finished.eq(1).all(): |
|
break |
|
else: |
|
self.fail("All batches never ended (very unlikely but " |
|
"maybe due to stochasticisty. If so, please " |
|
"increase the range of the for-loop.") |
|
|
|
self.assertTrue(samp.done) |
|
|
|
def test_returns_correct_scores_non_deterministic_beams(self): |
|
beam_size = 10 |
|
for batch_sz in [1, 13]: |
|
for temp in [1., 3.]: |
|
n_words = 100 |
|
_non_eos_idxs = [47, 51, 13, 88, 99] |
|
valid_score_dist_1 = torch.log_softmax(torch.tensor( |
|
[6., 5., 4., 3., 2., 1.]), dim=0) |
|
valid_score_dist_2 = torch.log_softmax(torch.tensor( |
|
[6., 1.]), dim=0) |
|
eos_idx = 2 |
|
lengths = torch.randint(0, 30, (batch_sz,)) |
|
samp = GreedySearch( |
|
0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, |
|
False, set(), False, 30, temp, 50, 0, |
|
beam_size, False) |
|
samp.initialize(torch.zeros((1, 1)), lengths) |
|
|
|
|
|
i = 0 |
|
for _ in range(100): |
|
word_probs = torch.full( |
|
(batch_sz*beam_size, n_words), -float('inf')) |
|
|
|
word_probs[beam_size-2, eos_idx] = valid_score_dist_1[0] |
|
|
|
|
|
word_probs[beam_size-2, |
|
_non_eos_idxs] = valid_score_dist_1[1:] |
|
word_probs[beam_size-2+1:, _non_eos_idxs[0] + i] = 0 |
|
word_probs[:beam_size-2, _non_eos_idxs[0] + i] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished[beam_size-2].eq(1).all(): |
|
self.assertFalse( |
|
samp.is_finished[:beam_size-2].eq(1).any()) |
|
self.assertFalse( |
|
samp.is_finished[beam_size-2+1].eq(1).any()) |
|
break |
|
else: |
|
self.fail("Batch 0 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
samp.update_finished() |
|
self.assertEqual( |
|
[samp.topk_scores[beam_size-2]], |
|
[valid_score_dist_1[0] / temp]) |
|
|
|
|
|
|
|
i = 1 |
|
for _ in range(100): |
|
word_probs = torch.full( |
|
(batch_sz*beam_size-1, n_words), -float('inf')) |
|
|
|
word_probs[(batch_sz-1)*beam_size + 7, |
|
eos_idx] = valid_score_dist_2[0] |
|
word_probs[:(batch_sz-1)*beam_size + 7, |
|
_non_eos_idxs[:2]] = valid_score_dist_2 |
|
word_probs[(batch_sz-1)*beam_size + 8:, |
|
_non_eos_idxs[:2]] = valid_score_dist_2 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if ( |
|
samp.is_finished[(batch_sz - 1) * beam_size + 7] |
|
.eq(1) |
|
.all() |
|
): |
|
break |
|
else: |
|
self.fail("Batch 8 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
|
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[ |
|
batch_sz-1][-1:]], |
|
[valid_score_dist_2[0] / temp]) |
|
|
|
|
|
i = 2 |
|
for _ in range(250): |
|
word_probs = torch.full( |
|
(samp.alive_seq.shape[0], n_words), -float('inf')) |
|
|
|
word_probs[:, eos_idx] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished.any(): |
|
samp.update_finished() |
|
if samp.is_finished.eq(1).all(): |
|
break |
|
else: |
|
self.fail("All batches never ended (very unlikely but " |
|
"maybe due to stochasticisty. If so, please " |
|
"increase the range of the for-loop.") |
|
|
|
self.assertTrue(samp.done) |
|
|
|
def test_returns_correct_scores_non_deterministic_topp(self): |
|
for batch_sz in [1, 13]: |
|
for temp in [1., 0.3]: |
|
n_words = 100 |
|
_non_eos_idxs = [47, 51, 13, 88, 99] |
|
valid_score_dist_1 = torch.log_softmax(torch.tensor( |
|
[6., 5., 4., 3., 2., 1.]), dim=0) |
|
valid_score_dist_2 = torch.log_softmax(torch.tensor( |
|
[6., 1.]), dim=0) |
|
eos_idx = 2 |
|
lengths = torch.randint(0, 30, (batch_sz,)) |
|
samp = GreedySearch( |
|
0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, |
|
False, set(), False, -1, temp, 50, 0.5, 1, False) |
|
samp.initialize(torch.zeros((1, 1)), lengths) |
|
|
|
i = 0 |
|
for _ in range(100): |
|
word_probs = torch.full( |
|
(batch_sz, n_words), -float('inf')) |
|
|
|
word_probs[0, eos_idx] = valid_score_dist_1[0] |
|
|
|
|
|
word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] |
|
word_probs[1:, _non_eos_idxs[0] + i] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished[0].eq(1).all(): |
|
break |
|
else: |
|
self.fail("Batch 0 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[0]], |
|
[valid_score_dist_1[0] / temp]) |
|
if batch_sz == 1: |
|
self.assertTrue(samp.done) |
|
continue |
|
else: |
|
self.assertFalse(samp.done) |
|
|
|
|
|
i = 1 |
|
for _ in range(200): |
|
word_probs = torch.full( |
|
(batch_sz - 1, n_words), -float('inf')) |
|
|
|
word_probs[7, eos_idx] = valid_score_dist_2[0] |
|
word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished[7].eq(1).all(): |
|
break |
|
else: |
|
self.fail("Batch 8 never ended (very unlikely but maybe " |
|
"due to stochasticisty. If so, please increase " |
|
"the range of the for-loop.") |
|
|
|
samp.update_finished() |
|
self.assertEqual( |
|
[score for score, _, _ in samp.hypotheses[8]], |
|
[valid_score_dist_2[0] / temp]) |
|
|
|
|
|
i = 2 |
|
for _ in range(250): |
|
word_probs = torch.full( |
|
(samp.alive_seq.shape[0], n_words), -float('inf')) |
|
|
|
word_probs[:, eos_idx] = 0 |
|
|
|
attns = torch.randn(1, batch_sz, 53) |
|
samp.advance(word_probs, attns) |
|
if samp.is_finished.any(): |
|
samp.update_finished() |
|
if samp.is_finished.eq(1).all(): |
|
break |
|
else: |
|
self.fail("All batches never ended (very unlikely but " |
|
"maybe due to stochasticisty. If so, please " |
|
"increase the range of the for-loop.") |
|
|
|
self.assertTrue(samp.done) |
|
|