|
|
|
|
|
|
|
|
|
|
|
"""Use operations learned with learn_bpe.py to encode a new text. |
|
The text will not be smaller, but use only a fixed vocabulary, with rare words |
|
encoded as variable-length sequences of subword units. |
|
|
|
Reference: |
|
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units. |
|
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. |
|
""" |
|
|
|
|
|
from __future__ import unicode_literals, division |
|
|
|
import sys |
|
import codecs |
|
import io |
|
import argparse |
|
import json |
|
import re |
|
from collections import defaultdict |
|
|
|
|
|
from io import open |
|
argparse.open = open |
|
|
|
|
|
class BPE(object): |
|
|
|
def __init__(self, codes, separator='@@', vocab=None, glossaries=None): |
|
|
|
|
|
firstline = codes.readline() |
|
if firstline.startswith('#version:'): |
|
self.version = tuple([int(x) for x in re.sub( |
|
r'(\.0+)*$', '', firstline.split()[-1]).split(".")]) |
|
else: |
|
self.version = (0, 1) |
|
codes.seek(0) |
|
|
|
self.bpe_codes = [tuple(item.split()) for item in codes] |
|
|
|
|
|
self.bpe_codes = dict( |
|
[(code, i) for (i, code) in reversed(list(enumerate(self.bpe_codes)))]) |
|
|
|
self.bpe_codes_reverse = dict( |
|
[(pair[0] + pair[1], pair) for pair, i in self.bpe_codes.items()]) |
|
|
|
self.separator = separator |
|
|
|
self.vocab = vocab |
|
|
|
self.glossaries = glossaries if glossaries else [] |
|
|
|
self.cache = {} |
|
|
|
def segment(self, sentence): |
|
"""segment single sentence (whitespace-tokenized string) with BPE encoding""" |
|
output = [] |
|
for word in sentence.split(): |
|
new_word = [out for segment in self._isolate_glossaries(word) |
|
for out in encode(segment, |
|
self.bpe_codes, |
|
self.bpe_codes_reverse, |
|
self.vocab, |
|
self.separator, |
|
self.version, |
|
self.cache, |
|
self.glossaries)] |
|
|
|
for item in new_word[:-1]: |
|
output.append(item + self.separator) |
|
output.append(new_word[-1]) |
|
|
|
return ' '.join(output) |
|
|
|
def _isolate_glossaries(self, word): |
|
word_segments = [word] |
|
for gloss in self.glossaries: |
|
word_segments = [out_segments for segment in word_segments |
|
for out_segments in isolate_glossary(segment, gloss)] |
|
return word_segments |
|
|
|
|
|
def create_parser(): |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
description="learn BPE-based word segmentation") |
|
|
|
parser.add_argument( |
|
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin, |
|
metavar='PATH', |
|
help="Input file (default: standard input).") |
|
parser.add_argument( |
|
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH', |
|
required=True, |
|
help="File with BPE codes (created by learn_bpe.py).") |
|
parser.add_argument( |
|
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout, |
|
metavar='PATH', |
|
help="Output file (default: standard output)") |
|
parser.add_argument( |
|
'--separator', '-s', type=str, default='@@', metavar='STR', |
|
help="Separator between non-final subword units (default: '%(default)s'))") |
|
parser.add_argument( |
|
'--vocabulary', type=argparse.FileType('r'), default=None, |
|
metavar="PATH", |
|
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.") |
|
parser.add_argument( |
|
'--vocabulary-threshold', type=int, default=None, |
|
metavar="INT", |
|
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV") |
|
parser.add_argument( |
|
'--glossaries', type=str, nargs='+', default=None, |
|
metavar="STR", |
|
help="Glossaries. The strings provided in glossaries will not be affected" + |
|
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords") |
|
|
|
return parser |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
|
|
word is represented as tuple of symbols (symbols being variable-length strings) |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries=None): |
|
"""Encode word based on list of BPE merge operations, which are applied consecutively |
|
""" |
|
|
|
if orig in cache: |
|
return cache[orig] |
|
|
|
if orig in glossaries: |
|
cache[orig] = (orig,) |
|
return (orig,) |
|
|
|
if version == (0, 1): |
|
word = tuple(orig) + ('</w>',) |
|
elif version == (0, 2): |
|
word = tuple(orig[:-1]) + (orig[-1] + '</w>',) |
|
else: |
|
raise NotImplementedError |
|
|
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return orig |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: bpe_codes.get(pair, float('inf'))) |
|
if bigram not in bpe_codes: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
|
|
|
|
if word[-1] == '</w>': |
|
word = word[:-1] |
|
elif word[-1].endswith('</w>'): |
|
word = word[:-1] + (word[-1].replace('</w>', ''),) |
|
|
|
if vocab: |
|
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator) |
|
|
|
cache[orig] = word |
|
return word |
|
|
|
|
|
def recursive_split(segment, bpe_codes, vocab, separator, final=False): |
|
"""Recursively split segment into smaller units (by reversing BPE merges) |
|
until all units are either in-vocabulary, or cannot be split futher.""" |
|
|
|
try: |
|
if final: |
|
left, right = bpe_codes[segment + '</w>'] |
|
right = right[:-4] |
|
else: |
|
left, right = bpe_codes[segment] |
|
except: |
|
|
|
yield segment |
|
return |
|
|
|
if left + separator in vocab: |
|
yield left |
|
else: |
|
for item in recursive_split(left, bpe_codes, vocab, separator, False): |
|
yield item |
|
|
|
if (final and right in vocab) or (not final and right + separator in vocab): |
|
yield right |
|
else: |
|
for item in recursive_split(right, bpe_codes, vocab, separator, final): |
|
yield item |
|
|
|
|
|
def check_vocab_and_split(orig, bpe_codes, vocab, separator): |
|
"""Check for each segment in word if it is in-vocabulary, |
|
and segment OOV segments into smaller units by reversing the BPE merge operations""" |
|
|
|
out = [] |
|
|
|
for segment in orig[:-1]: |
|
if segment + separator in vocab: |
|
out.append(segment) |
|
else: |
|
|
|
for item in recursive_split(segment, bpe_codes, vocab, separator, False): |
|
out.append(item) |
|
|
|
segment = orig[-1] |
|
if segment in vocab: |
|
out.append(segment) |
|
else: |
|
|
|
for item in recursive_split(segment, bpe_codes, vocab, separator, True): |
|
out.append(item) |
|
|
|
return out |
|
|
|
|
|
def read_vocabulary(vocab_file, threshold): |
|
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold. |
|
""" |
|
|
|
vocabulary = set() |
|
|
|
for line in vocab_file: |
|
word, freq = line.split() |
|
freq = int(freq) |
|
if threshold == None or freq >= threshold: |
|
vocabulary.add(word) |
|
|
|
return vocabulary |
|
|
|
|
|
def isolate_glossary(word, glossary): |
|
""" |
|
Isolate a glossary present inside a word. |
|
|
|
Returns a list of subwords. In which all 'glossary' glossaries are isolated |
|
|
|
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is: |
|
['1934', 'USA', 'B', 'USA'] |
|
""" |
|
if word == glossary or glossary not in word: |
|
return [word] |
|
else: |
|
splits = word.split(glossary) |
|
segments = [segment.strip() for split in splits[:-1] |
|
for segment in [split, glossary] if segment != ''] |
|
return segments + [splits[-1].strip()] if splits[-1] != '' else segments |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
if sys.version_info < (3, 0): |
|
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) |
|
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) |
|
sys.stdin = codecs.getreader('UTF-8')(sys.stdin) |
|
else: |
|
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8') |
|
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') |
|
sys.stdout = io.TextIOWrapper( |
|
sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True) |
|
|
|
parser = create_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
args.codes = codecs.open(args.codes.name, encoding='utf-8') |
|
if args.input.name != '<stdin>': |
|
args.input = codecs.open(args.input.name, encoding='utf-8') |
|
if args.output.name != '<stdout>': |
|
args.output = codecs.open(args.output.name, 'w', encoding='utf-8') |
|
if args.vocabulary: |
|
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8') |
|
|
|
if args.vocabulary: |
|
vocabulary = read_vocabulary( |
|
args.vocabulary, args.vocabulary_threshold) |
|
else: |
|
vocabulary = None |
|
|
|
bpe = BPE(args.codes, args.separator, vocabulary, args.glossaries) |
|
|
|
for line in args.input: |
|
args.output.write(bpe.segment(line).strip()) |
|
args.output.write('\n') |
|
|