|
|
|
|
|
|
|
|
|
|
|
"""Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text. |
|
Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary |
|
of a text to a configurable number of symbols, with only a small increase in the number of tokens. |
|
|
|
Reference: |
|
Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units. |
|
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. |
|
""" |
|
|
|
|
|
from __future__ import unicode_literals |
|
|
|
import sys |
|
import codecs |
|
import re |
|
import copy |
|
import argparse |
|
from collections import defaultdict, Counter |
|
|
|
|
|
from io import open |
|
argparse.open = open |
|
|
|
|
|
def create_parser(): |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
description="learn BPE-based word segmentation") |
|
|
|
parser.add_argument( |
|
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin, |
|
metavar='PATH', |
|
help="Input text (default: standard input).") |
|
|
|
parser.add_argument( |
|
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout, |
|
metavar='PATH', |
|
help="Output file for BPE codes (default: standard output)") |
|
parser.add_argument( |
|
'--symbols', '-s', type=int, default=10000, |
|
help="Create this many new symbols (each representing a character n-gram) (default: %(default)s))") |
|
parser.add_argument( |
|
'--min-frequency', type=int, default=2, metavar='FREQ', |
|
help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s))') |
|
parser.add_argument('--dict-input', action="store_true", |
|
help="If set, input file is interpreted as a dictionary where each line contains a word-count pair") |
|
parser.add_argument( |
|
'--verbose', '-v', action="store_true", |
|
help="verbose mode.") |
|
|
|
return parser |
|
|
|
|
|
def get_vocabulary(fobj, is_dict=False): |
|
"""Read text and return dictionary that encodes vocabulary |
|
""" |
|
vocab = Counter() |
|
for line in fobj: |
|
if is_dict: |
|
word, count = line.strip().split() |
|
vocab[word] = int(count) |
|
else: |
|
for word in line.split(): |
|
vocab[word] += 1 |
|
return vocab |
|
|
|
|
|
def update_pair_statistics(pair, changed, stats, indices): |
|
"""Minimally update the indices and frequency of symbol pairs |
|
|
|
if we merge a pair of symbols, only pairs that overlap with occurrences |
|
of this pair are affected, and need to be updated. |
|
""" |
|
stats[pair] = 0 |
|
indices[pair] = defaultdict(int) |
|
first, second = pair |
|
new_pair = first + second |
|
for j, word, old_word, freq in changed: |
|
|
|
|
|
i = 0 |
|
while True: |
|
|
|
try: |
|
i = old_word.index(first, i) |
|
except ValueError: |
|
break |
|
|
|
if i < len(old_word) - 1 and old_word[i + 1] == second: |
|
|
|
if i: |
|
prev = old_word[i - 1:i + 1] |
|
stats[prev] -= freq |
|
indices[prev][j] -= 1 |
|
if i < len(old_word) - 2: |
|
|
|
|
|
if old_word[i + 2] != first or i >= len(old_word) - 3 or old_word[i + 3] != second: |
|
nex = old_word[i + 1:i + 3] |
|
stats[nex] -= freq |
|
indices[nex][j] -= 1 |
|
i += 2 |
|
else: |
|
i += 1 |
|
|
|
i = 0 |
|
while True: |
|
try: |
|
|
|
i = word.index(new_pair, i) |
|
except ValueError: |
|
break |
|
|
|
if i: |
|
prev = word[i - 1:i + 1] |
|
stats[prev] += freq |
|
indices[prev][j] += 1 |
|
|
|
|
|
if i < len(word) - 1 and word[i + 1] != new_pair: |
|
nex = word[i:i + 2] |
|
stats[nex] += freq |
|
indices[nex][j] += 1 |
|
i += 1 |
|
|
|
|
|
def get_pair_statistics(vocab): |
|
"""Count frequency of all symbol pairs, and create index""" |
|
|
|
|
|
stats = defaultdict(int) |
|
|
|
|
|
indices = defaultdict(lambda: defaultdict(int)) |
|
|
|
for i, (word, freq) in enumerate(vocab): |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
stats[prev_char, char] += freq |
|
indices[prev_char, char][i] += 1 |
|
prev_char = char |
|
|
|
return stats, indices |
|
|
|
|
|
def replace_pair(pair, vocab, indices): |
|
"""Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'""" |
|
first, second = pair |
|
pair_str = ''.join(pair) |
|
pair_str = pair_str.replace('\\', '\\\\') |
|
changes = [] |
|
pattern = re.compile( |
|
r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)') |
|
if sys.version_info < (3, 0): |
|
iterator = indices[pair].iteritems() |
|
else: |
|
iterator = indices[pair].items() |
|
for j, freq in iterator: |
|
if freq < 1: |
|
continue |
|
word, freq = vocab[j] |
|
new_word = ' '.join(word) |
|
new_word = pattern.sub(pair_str, new_word) |
|
new_word = tuple(new_word.split()) |
|
|
|
vocab[j] = (new_word, freq) |
|
changes.append((j, new_word, word, freq)) |
|
|
|
return changes |
|
|
|
|
|
def prune_stats(stats, big_stats, threshold): |
|
"""Prune statistics dict for efficiency of max() |
|
|
|
The frequency of a symbol pair never increases, so pruning is generally safe |
|
(until we the most frequent pair is less frequent than a pair we previously pruned) |
|
big_stats keeps full statistics for when we need to access pruned items |
|
""" |
|
for item, freq in list(stats.items()): |
|
if freq < threshold: |
|
del stats[item] |
|
if freq < 0: |
|
big_stats[item] += freq |
|
else: |
|
big_stats[item] = freq |
|
|
|
|
|
def main(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False): |
|
"""Learn num_symbols BPE operations from vocabulary, and write to outfile. |
|
""" |
|
|
|
|
|
|
|
outfile.write('#version: 0.2\n') |
|
|
|
vocab = get_vocabulary(infile, is_dict) |
|
vocab = dict([(tuple(x[:-1]) + (x[-1] + '</w>',), y) |
|
for (x, y) in vocab.items()]) |
|
sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) |
|
|
|
stats, indices = get_pair_statistics(sorted_vocab) |
|
big_stats = copy.deepcopy(stats) |
|
|
|
threshold = max(stats.values()) / 10 |
|
for i in range(num_symbols): |
|
if stats: |
|
most_frequent = max(stats, key=lambda x: (stats[x], x)) |
|
|
|
|
|
if not stats or (i and stats[most_frequent] < threshold): |
|
prune_stats(stats, big_stats, threshold) |
|
stats = copy.deepcopy(big_stats) |
|
most_frequent = max(stats, key=lambda x: (stats[x], x)) |
|
|
|
threshold = stats[most_frequent] * i / (i + 10000.0) |
|
prune_stats(stats, big_stats, threshold) |
|
|
|
if stats[most_frequent] < min_frequency: |
|
sys.stderr.write( |
|
'no pair has frequency >= {0}. Stopping\n'.format(min_frequency)) |
|
break |
|
|
|
if verbose: |
|
sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format( |
|
i, most_frequent[0], most_frequent[1], stats[most_frequent])) |
|
outfile.write('{0} {1}\n'.format(*most_frequent)) |
|
changes = replace_pair(most_frequent, sorted_vocab, indices) |
|
update_pair_statistics(most_frequent, changes, stats, indices) |
|
stats[most_frequent] = 0 |
|
if not i % 100: |
|
prune_stats(stats, big_stats, threshold) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
if sys.version_info < (3, 0): |
|
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) |
|
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) |
|
sys.stdin = codecs.getreader('UTF-8')(sys.stdin) |
|
else: |
|
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer) |
|
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer) |
|
sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer) |
|
|
|
parser = create_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
if args.input.name != '<stdin>': |
|
args.input = codecs.open(args.input.name, encoding='utf-8') |
|
if args.output.name != '<stdout>': |
|
args.output = codecs.open(args.output.name, 'w', encoding='utf-8') |
|
|
|
main(args.input, args.output, args.symbols, |
|
args.min_frequency, args.verbose, is_dict=args.dict_input) |
|
|