sakharamg's picture
Uploading all files
158b61b
#
# Copyright (c) 2013-present, Anoop Kunchukuttan
# All rights reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import pandas as pd
import numpy as np
import os
from indicnlp import common
from indicnlp.common import IndicNlpException
from indicnlp import langinfo as li
###
# Phonetic Information about script characters
###
""" Phonetic data about all languages except Tamil """
ALL_PHONETIC_DATA=None
""" Phonetic data for Tamil """
TAMIL_PHONETIC_DATA=None
""" Phonetic vector for all languages except Tamil """
ALL_PHONETIC_VECTORS=None
""" Phonetic vector for Tamil """
TAMIL_PHONETIC_VECTORS=None
""" Length of phonetic vector """
PHONETIC_VECTOR_LENGTH=38
""" Start offset for the phonetic feature vector in the phonetic data vector """
PHONETIC_VECTOR_START_OFFSET=6
## PHONETIC PROPERTIES in order in which they occur in the vector
## This list must be in sync with the keys in the PV_PROP_RANGES dictionary
PV_PROP=['basic_type',
'vowel_length',
'vowel_strength',
'vowel_status',
'consonant_type',
'articulation_place',
'aspiration',
'voicing',
'nasalization',
'vowel_horizontal',
'vowel_vertical',
'vowel_roundness',
]
###
# Bit vector ranges for various properties
###
PV_PROP_RANGES={
'basic_type': [0,6],
'vowel_length': [6,8],
'vowel_strength': [8,11],
'vowel_status': [11,13],
'consonant_type': [13,18],
'articulation_place': [18,23],
'aspiration': [23,25],
'voicing': [25,27],
'nasalization': [27,29],
'vowel_horizontal': [29,32],
'vowel_vertical': [32,36],
'vowel_roundness': [36,38],
}
####
# Indexes into the Phonetic Vector
####
PVIDX_BT_VOWEL=0
PVIDX_BT_CONSONANT=1
PVIDX_BT_NUKTA=2
PVIDX_BT_HALANT=3
PVIDX_BT_ANUSVAAR=4
PVIDX_BT_MISC=5
PVIDX_BT_S=PVIDX_BT_VOWEL
PVIDX_BT_E=PVIDX_BT_MISC+1
PVIDX_VSTAT_DEP=12
#####
# Unicode information about characters
#####
SCRIPT_OFFSET_START=0
SCRIPT_OFFSET_RANGE=0x80
def init():
"""
To be called by library loader, do not call it in your program
"""
global ALL_PHONETIC_DATA, ALL_PHONETIC_VECTORS, TAMIL_PHONETIC_DATA, TAMIL_PHONETIC_VECTORS, PHONETIC_VECTOR_LENGTH, PHONETIC_VECTOR_START_OFFSET
ALL_PHONETIC_DATA=pd.read_csv(os.path.join(common.get_resources_path(),'script','all_script_phonetic_data.csv'),encoding='utf-8')
TAMIL_PHONETIC_DATA=pd.read_csv(os.path.join(common.get_resources_path(),'script','tamil_script_phonetic_data.csv'),encoding='utf-8')
ALL_PHONETIC_VECTORS= ALL_PHONETIC_DATA.iloc[:,PHONETIC_VECTOR_START_OFFSET:].values
TAMIL_PHONETIC_VECTORS=TAMIL_PHONETIC_DATA.iloc[:,PHONETIC_VECTOR_START_OFFSET:].values
PHONETIC_VECTOR_LENGTH=ALL_PHONETIC_VECTORS.shape[1]
def is_supported_language(lang):
return lang in list(li.SCRIPT_RANGES.keys())
def get_offset(c,lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return ord(c)-li.SCRIPT_RANGES[lang][0]
def offset_to_char(off,lang):
"""
Applicable to Brahmi derived Indic scripts
"""
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return chr(off+li.SCRIPT_RANGES[lang][0])
def is_indiclang_char(c,lang):
"""
Applicable to Brahmi derived Indic scripts
Note that DANDA and DOUBLE_DANDA have the same Unicode codepoint for all Indic scripts
"""
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
o=get_offset(c,lang)
return (o>=SCRIPT_OFFSET_START and o<SCRIPT_OFFSET_RANGE) \
or ord(c)==li.DANDA or ord(c)==li.DOUBLE_DANDA
def in_coordinated_range_offset(c_offset):
"""
Applicable to Brahmi derived Indic scripts
"""
return (c_offset>=li.COORDINATED_RANGE_START_INCLUSIVE and c_offset<=li.COORDINATED_RANGE_END_INCLUSIVE)
def in_coordinated_range(c,lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return in_coordinated_range_offset(get_offset(c,lang))
def get_phonetic_info(lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
phonetic_data= ALL_PHONETIC_DATA if lang!=li.LC_TA else TAMIL_PHONETIC_DATA
phonetic_vectors= ALL_PHONETIC_VECTORS if lang!=li.LC_TA else TAMIL_PHONETIC_VECTORS
return (phonetic_data, phonetic_vectors)
def invalid_vector():
## TODO: check if np datatype is correct?
return np.array([0]*PHONETIC_VECTOR_LENGTH)
def get_phonetic_feature_vector(c,lang):
offset=get_offset(c,lang)
if not in_coordinated_range_offset(offset):
return invalid_vector()
phonetic_data, phonetic_vectors= get_phonetic_info(lang)
if phonetic_data.iloc[offset]['Valid Vector Representation']==0:
return invalid_vector()
return phonetic_vectors[offset]
def get_phonetic_feature_vector_offset(offset,lang):
if not in_coordinated_range_offset(offset):
return invalid_vector()
phonetic_data, phonetic_vectors= get_phonetic_info(lang)
if phonetic_data.iloc[offset]['Valid Vector Representation']==0:
return invalid_vector()
return phonetic_vectors[offset]
### Unary operations on vectors
def is_valid(v):
return np.sum(v)>0
def is_vowel(v):
return v[PVIDX_BT_VOWEL]==1
def is_consonant(v):
return v[PVIDX_BT_CONSONANT]==1
def is_halant(v):
return v[PVIDX_BT_HALANT]==1
def is_nukta(v):
return v[PVIDX_BT_NUKTA]==1
def is_anusvaar(v):
return v[PVIDX_BT_ANUSVAAR]==1
def is_misc(v):
return v[PVIDX_BT_MISC]==1
def is_dependent_vowel(v):
return is_vowel(v) and v[PVIDX_VSTAT_DEP]==1
def is_plosive(v):
return is_consonant(v) and get_property_vector(v,'consonant_type')[0]==1
### Binary operations on phonetic vectors
def or_vectors(v1,v2):
return np.array([ 1 if (b1+b2)>=1 else 0 for b1,b2 in zip(v1,v2) ])
def xor_vectors(v1,v2):
return np.array([ 1 if b1!=b2 else 0 for b1,b2 in zip(v1,v2) ])
### Getting properties from phonetic vectors
def get_property_vector(v,prop_name):
return v[PV_PROP_RANGES[prop_name][0]:PV_PROP_RANGES[prop_name][1]]
def get_property_value(v,prop_name):
factor_bits=get_property_vector(v,prop_name).tolist()
v=0
c=1
for b in factor_bits[::-1]:
v+=(c*b)
c=c*2.0
return int(v)
def lcsr_indic(srcw,tgtw,slang,tlang):
"""
compute the Longest Common Subsequence Ratio (LCSR) between two strings at the character level.
This works for Indic scripts by mapping both languages to a common script
srcw: source language string
tgtw: source language string
slang: source language
tlang: target language
"""
score_mat=np.zeros((len(srcw)+1,len(tgtw)+1))
for si,sc in enumerate(srcw,1):
for ti,tc in enumerate(tgtw,1):
so=get_offset(sc,slang)
to=get_offset(tc,tlang)
if in_coordinated_range_offset(so) and in_coordinated_range_offset(to) and so==to:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
elif not (in_coordinated_range_offset(so) or in_coordinated_range_offset(to)) and sc==tc:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
else:
score_mat[si,ti]= max(
score_mat[si,ti-1],
score_mat[si-1,ti])
return (score_mat[-1,-1]/float(max(len(srcw),len(tgtw))),float(len(srcw)),float(len(tgtw)))
def lcsr_any(srcw,tgtw):
"""
LCSR computation if both languages have the same script
"""
score_mat=np.zeros((len(srcw)+1,len(tgtw)+1))
for si,sc in enumerate(srcw,1):
for ti,tc in enumerate(tgtw,1):
if sc==tc:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
else:
score_mat[si,ti]= max(
score_mat[si,ti-1],
score_mat[si-1,ti])
return (score_mat[-1,-1]/float(max(len(srcw),len(tgtw))),float(len(srcw)),float(len(tgtw)))
def lcsr(srcw,tgtw,slang,tlang):
"""
compute the Longest Common Subsequence Ratio (LCSR) between two strings at the character level.
srcw: source language string
tgtw: source language string
slang: source language
tlang: target language
"""
if slang==tlang or not is_supported_language(slang) or not is_supported_language(tlang):
return lcsr_any(srcw,tgtw,slang,tlang)
else:
return lcsr_indic(srcw,tgtw)