NMTKD
/
translation
/tools
/mosesdecoder
/moses
/TranslationModel
/PhraseDictionaryMultiModelCounts.cpp
/*********************************************************************** | |
Moses - factored phrase-based language decoder | |
Copyright (C) 2006 University of Edinburgh | |
This library is free software; you can redistribute it and/or | |
modify it under the terms of the GNU Lesser General Public | |
License as published by the Free Software Foundation; either | |
version 2.1 of the License, or (at your option) any later version. | |
This library is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public | |
License along with this library; if not, write to the Free Software | |
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
***********************************************************************/ | |
using namespace std; | |
template<typename T> | |
void OutputVec(const vector<T> &vec) | |
{ | |
for (size_t i = 0; i < vec.size(); ++i) { | |
cerr << vec[i] << " " << flush; | |
} | |
cerr << endl; | |
} | |
namespace Moses | |
{ | |
PhraseDictionaryMultiModelCounts::PhraseDictionaryMultiModelCounts(const std::string &line) | |
:PhraseDictionaryMultiModel(1, line) | |
{ | |
m_mode = "instance_weighting"; | |
m_combineFunction = InstanceWeighting; | |
cerr << "m_args=" << m_args.size() << endl; | |
ReadParameters(); | |
UTIL_THROW_IF2(m_targetTable.size() != m_pdStr.size(), | |
"List of phrase tables and target tables must be equal"); | |
} | |
void PhraseDictionaryMultiModelCounts::SetParameter(const std::string& key, const std::string& value) | |
{ | |
if (key == "mode") { | |
m_mode = value; | |
if (m_mode == "instance_weighting") | |
m_combineFunction = InstanceWeighting; | |
else if (m_mode == "interpolate") | |
m_combineFunction = LinearInterpolationFromCounts; | |
else { | |
util::StringStream msg; | |
msg << "combination mode unknown: " << m_mode; | |
throw runtime_error(msg.str()); | |
} | |
} else if (key == "lex-e2f") { | |
m_lexE2FStr = Tokenize(value, ","); | |
UTIL_THROW_IF2(m_lexE2FStr.size() != m_pdStr.size(), | |
"Number of scores for lexical probability p(f|e) incorrectly specified"); | |
} else if (key == "lex-f2e") { | |
m_lexF2EStr = Tokenize(value, ","); | |
UTIL_THROW_IF2(m_lexF2EStr.size() != m_pdStr.size(), | |
"Number of scores for lexical probability p(e|f) incorrectly specified"); | |
} else if (key == "target-table") { | |
m_targetTable = Tokenize(value, ","); | |
} else { | |
PhraseDictionaryMultiModel::SetParameter(key, value); | |
} | |
} | |
PhraseDictionaryMultiModelCounts::~PhraseDictionaryMultiModelCounts() | |
{ | |
RemoveAllInColl(m_lexTable_e2f); | |
RemoveAllInColl(m_lexTable_f2e); | |
} | |
void PhraseDictionaryMultiModelCounts::Load(AllOptions::ptr const& opts) | |
{ | |
m_options = opts; | |
SetFeaturesToApply(); | |
for(size_t i = 0; i < m_numModels; ++i) { | |
// phrase table | |
const string &ptName = m_pdStr[i]; | |
PhraseDictionary *pt; | |
pt = FindPhraseDictionary(ptName); | |
UTIL_THROW_IF2(pt == NULL, | |
"Could not find component phrase table " << ptName); | |
m_pd.push_back(pt); | |
// reverse | |
const string &target_table = m_targetTable[i]; | |
pt = FindPhraseDictionary(target_table); | |
UTIL_THROW_IF2(pt == NULL, | |
"Could not find component phrase table " << target_table); | |
m_inverse_pd.push_back(pt); | |
// lex | |
string lex_e2f = m_lexE2FStr[i]; | |
string lex_f2e = m_lexF2EStr[i]; | |
lexicalTable* e2f = new lexicalTable; | |
LoadLexicalTable(lex_e2f, e2f); | |
lexicalTable* f2e = new lexicalTable; | |
LoadLexicalTable(lex_f2e, f2e); | |
m_lexTable_e2f.push_back(e2f); | |
m_lexTable_f2e.push_back(f2e); | |
} | |
} | |
TargetPhraseCollection::shared_ptr PhraseDictionaryMultiModelCounts::GetTargetPhraseCollectionLEGACY(const Phrase& src) const | |
{ | |
vector<vector<float> > multimodelweights; | |
bool normalize; | |
normalize = (m_mode == "interpolate") ? true : false; | |
multimodelweights = getWeights(4,normalize); | |
//source phrase frequency is shared among all phrase pairs | |
vector<float> fs(m_numModels); | |
map<string,multiModelCountsStats*>* allStats = new(map<string,multiModelCountsStats*>); | |
CollectSufficientStats(src, fs, allStats); | |
TargetPhraseCollection::shared_ptr ret | |
= CreateTargetPhraseCollectionCounts(src, fs, allStats, multimodelweights); | |
ret->NthElement(m_tableLimit); // sort the phrases for pruning later | |
const_cast<PhraseDictionaryMultiModelCounts*>(this)->CacheForCleanup(ret); | |
return ret; | |
} | |
void | |
PhraseDictionaryMultiModelCounts:: | |
CollectSufficientStats(const Phrase& src, vector<float> &fs, | |
map<string,multiModelCountsStats*>* allStats) const | |
//fill fs and allStats with statistics from models | |
{ | |
for(size_t i = 0; i < m_numModels; ++i) { | |
const PhraseDictionary &pd = *m_pd[i]; | |
TargetPhraseCollection::shared_ptr ret_raw | |
= pd.GetTargetPhraseCollectionLEGACY(src); | |
if (ret_raw != NULL) { | |
TargetPhraseCollection::const_iterator iterTargetPhrase; | |
for (iterTargetPhrase = ret_raw->begin(); iterTargetPhrase != ret_raw->end(); ++iterTargetPhrase) { | |
const TargetPhrase * targetPhrase = *iterTargetPhrase; | |
vector<float> raw_scores = targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd); | |
string targetString = targetPhrase->GetStringRep(m_output); | |
if (allStats->find(targetString) == allStats->end()) { | |
multiModelCountsStats * statistics = new multiModelCountsStats; | |
statistics->targetPhrase = new TargetPhrase(*targetPhrase); //make a copy so that we don't overwrite the original phrase table info | |
//correct future cost estimates and total score | |
statistics->targetPhrase->GetScoreBreakdown().InvertDenseFeatures(&pd); | |
vector<FeatureFunction*> pd_feature; | |
pd_feature.push_back(m_pd[i]); | |
const vector<FeatureFunction*> pd_feature_const(pd_feature); | |
statistics->targetPhrase->EvaluateInIsolation(src, pd_feature_const); | |
// zero out scores from original phrase table | |
statistics->targetPhrase->GetScoreBreakdown().ZeroDenseFeatures(&pd); | |
statistics->fst.resize(m_numModels); | |
statistics->ft.resize(m_numModels); | |
(*allStats)[targetString] = statistics; | |
} | |
multiModelCountsStats * statistics = (*allStats)[targetString]; | |
statistics->fst[i] = UntransformScore(raw_scores[0]); | |
statistics->ft[i] = UntransformScore(raw_scores[1]); | |
fs[i] = UntransformScore(raw_scores[2]); | |
(*allStats)[targetString] = statistics; | |
} | |
} | |
} | |
// get target phrase frequency for models which have not seen the phrase pair | |
for ( map< string, multiModelCountsStats*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) { | |
multiModelCountsStats * statistics = iter->second; | |
for (size_t i = 0; i < m_numModels; ++i) { | |
if (!statistics->ft[i]) { | |
statistics->ft[i] = GetTargetCount(static_cast<const Phrase&>(*statistics->targetPhrase), i); | |
} | |
} | |
} | |
} | |
TargetPhraseCollection::shared_ptr | |
PhraseDictionaryMultiModelCounts:: | |
CreateTargetPhraseCollectionCounts(const Phrase &src, vector<float> &fs, map<string,multiModelCountsStats*>* allStats, vector<vector<float> > &multimodelweights) const | |
{ | |
TargetPhraseCollection::shared_ptr ret(new TargetPhraseCollection); | |
for ( map< string, multiModelCountsStats*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) { | |
multiModelCountsStats * statistics = iter->second; | |
if (statistics->targetPhrase->GetAlignTerm().GetSize() == 0) { | |
UTIL_THROW(util::Exception, " alignment information empty\ncount-tables need to include alignment information for computation of lexical weights.\nUse --phrase-word-alignment during training; for on-disk tables, also set -alignment-info when creating on-disk tables."); | |
} | |
try { | |
pair<vector< set<size_t> >, vector< set<size_t> > > alignment = GetAlignmentsForLexWeights(src, static_cast<const Phrase&>(*statistics->targetPhrase), statistics->targetPhrase->GetAlignTerm()); | |
vector< set<size_t> > alignedToT = alignment.first; | |
vector< set<size_t> > alignedToS = alignment.second; | |
double lexst = ComputeWeightedLexicalTranslation(static_cast<const Phrase&>(*statistics->targetPhrase), src, alignedToS, m_lexTable_e2f, multimodelweights[1], false ); | |
double lexts = ComputeWeightedLexicalTranslation(src, static_cast<const Phrase&>(*statistics->targetPhrase), alignedToT, m_lexTable_f2e, multimodelweights[3], true ); | |
Scores scoreVector(4); | |
scoreVector[0] = FloorScore(TransformScore(m_combineFunction(statistics->fst, statistics->ft, multimodelweights[0]))); | |
scoreVector[1] = FloorScore(TransformScore(lexst)); | |
scoreVector[2] = FloorScore(TransformScore(m_combineFunction(statistics->fst, fs, multimodelweights[2]))); | |
scoreVector[3] = FloorScore(TransformScore(lexts)); | |
statistics->targetPhrase->GetScoreBreakdown().Assign(this, scoreVector); | |
//correct future cost estimates and total score | |
vector<FeatureFunction*> pd_feature; | |
pd_feature.push_back(const_cast<PhraseDictionaryMultiModelCounts*>(this)); | |
const vector<FeatureFunction*> pd_feature_const(pd_feature); | |
statistics->targetPhrase->EvaluateInIsolation(src, pd_feature_const); | |
} catch (AlignmentException& e) { | |
continue; | |
} | |
ret->Add(new TargetPhrase(*statistics->targetPhrase)); | |
} | |
RemoveAllInMap(*allStats); | |
delete allStats; | |
return ret; | |
} | |
float PhraseDictionaryMultiModelCounts::GetTargetCount(const Phrase &target, size_t modelIndex) const | |
{ | |
const PhraseDictionary &pd = *m_inverse_pd[modelIndex]; | |
TargetPhraseCollection::shared_ptr ret_raw = pd.GetTargetPhraseCollectionLEGACY(target); | |
// in inverse mode, we want the first score of the first phrase pair (note: if we were to work with truly symmetric models, it would be the third score) | |
if (ret_raw && ret_raw->GetSize() > 0) { | |
const TargetPhrase * targetPhrase = *(ret_raw->begin()); | |
return UntransformScore(targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd)[0]); | |
} | |
// target phrase unknown | |
else return 0; | |
} | |
pair<PhraseDictionaryMultiModelCounts::AlignVector,PhraseDictionaryMultiModelCounts::AlignVector> PhraseDictionaryMultiModelCounts::GetAlignmentsForLexWeights(const Phrase &phraseS, const Phrase &phraseT, const AlignmentInfo &alignment) const | |
{ | |
size_t tsize = phraseT.GetSize(); | |
size_t ssize = phraseS.GetSize(); | |
AlignVector alignedToT (tsize); | |
AlignVector alignedToS (ssize); | |
AlignmentInfo::const_iterator iter; | |
for (iter = alignment.begin(); iter != alignment.end(); ++iter) { | |
const pair<size_t,size_t> &alignPair = *iter; | |
size_t s = alignPair.first; | |
size_t t = alignPair.second; | |
if (s >= ssize || t >= tsize) { | |
cerr << "Error: inconsistent alignment for phrase pair: " << phraseS << " - " << phraseT << endl; | |
cerr << "phrase pair will be discarded" << endl; | |
throw AlignmentException(); | |
} | |
alignedToT[t].insert( s ); | |
alignedToS[s].insert( t ); | |
} | |
return make_pair(alignedToT,alignedToS); | |
} | |
double PhraseDictionaryMultiModelCounts::ComputeWeightedLexicalTranslation( const Phrase &phraseS, const Phrase &phraseT, AlignVector &alignment, const vector<lexicalTable*> &tables, vector<float> &multimodelweights, bool is_input) const | |
{ | |
// lexical translation probability | |
double lexScore = 1.0; | |
Word null; | |
if (is_input) { | |
null.CreateFromString(Input, m_input, "NULL", false); | |
} else { | |
null.CreateFromString(Output, m_output, "NULL", false); | |
} | |
// all target words have to be explained | |
for(size_t ti=0; ti<alignment.size(); ti++) { | |
const set< size_t > & srcIndices = alignment[ ti ]; | |
Word t_word = phraseT.GetWord(ti); | |
if (srcIndices.empty()) { | |
// explain unaligned word by NULL | |
lexScore *= GetLexicalProbability( null, t_word, tables, multimodelweights ); | |
} else { | |
// go through all the aligned words to compute average | |
double thisWordScore = 0; | |
for (set< size_t >::const_iterator si(srcIndices.begin()); si != srcIndices.end(); ++si) { | |
Word s_word = phraseS.GetWord(*si); | |
thisWordScore += GetLexicalProbability( s_word, t_word, tables, multimodelweights ); | |
} | |
lexScore *= thisWordScore / srcIndices.size(); | |
} | |
} | |
return lexScore; | |
} | |
lexicalCache PhraseDictionaryMultiModelCounts::CacheLexicalStats( const Phrase &phraseS, const Phrase &phraseT, AlignVector &alignment, const vector<lexicalTable*> &tables, bool is_input ) | |
{ | |
//do all the necessary lexical table lookups and get counts, but don't apply weights yet | |
Word null; | |
if (is_input) { | |
null.CreateFromString(Input, m_input, "NULL", false); | |
} else { | |
null.CreateFromString(Output, m_output, "NULL", false); | |
} | |
lexicalCache ret; | |
// all target words have to be explained | |
for(size_t ti=0; ti<alignment.size(); ti++) { | |
const set< size_t > & srcIndices = alignment[ ti ]; | |
Word t_word = phraseT.GetWord(ti); | |
vector<lexicalPair> ti_vector; | |
if (srcIndices.empty()) { | |
// explain unaligned word by NULL | |
vector<float> joint_count (m_numModels); | |
vector<float> marginals (m_numModels); | |
FillLexicalCountsJoint(null, t_word, joint_count, tables); | |
FillLexicalCountsMarginal(null, marginals, tables); | |
ti_vector.push_back(make_pair(joint_count, marginals)); | |
} else { | |
for (set< size_t >::const_iterator si(srcIndices.begin()); si != srcIndices.end(); ++si) { | |
Word s_word = phraseS.GetWord(*si); | |
vector<float> joint_count (m_numModels); | |
vector<float> marginals (m_numModels); | |
FillLexicalCountsJoint(s_word, t_word, joint_count, tables); | |
FillLexicalCountsMarginal(s_word, marginals, tables); | |
ti_vector.push_back(make_pair(joint_count, marginals)); | |
} | |
} | |
ret.push_back(ti_vector); | |
} | |
return ret; | |
} | |
double PhraseDictionaryMultiModelCounts::ComputeWeightedLexicalTranslationFromCache( lexicalCache &cache, vector<float> &weights ) const | |
{ | |
// lexical translation probability | |
double lexScore = 1.0; | |
for (lexicalCache::const_iterator iter = cache.begin(); iter != cache.end(); ++iter) { | |
vector<lexicalPair> t_vector = *iter; | |
double thisWordScore = 0; | |
for ( vector<lexicalPair>::const_iterator iter2 = t_vector.begin(); iter2 != t_vector.end(); ++iter2) { | |
vector<float> joint_count = iter2->first; | |
vector<float> marginal = iter2->second; | |
thisWordScore += m_combineFunction(joint_count, marginal, weights); | |
} | |
lexScore *= thisWordScore / t_vector.size(); | |
} | |
return lexScore; | |
} | |
// get lexical probability for single word alignment pair | |
double PhraseDictionaryMultiModelCounts::GetLexicalProbability( Word &wordS, Word &wordT, const vector<lexicalTable*> &tables, vector<float> &multimodelweights ) const | |
{ | |
vector<float> joint_count (m_numModels); | |
vector<float> marginals (m_numModels); | |
FillLexicalCountsJoint(wordS, wordT, joint_count, tables); | |
FillLexicalCountsMarginal(wordS, marginals, tables); | |
double lexProb = m_combineFunction(joint_count, marginals, multimodelweights); | |
return lexProb; | |
} | |
void PhraseDictionaryMultiModelCounts::FillLexicalCountsJoint(Word &wordS, Word &wordT, vector<float> &count, const vector<lexicalTable*> &tables) const | |
{ | |
for (size_t i=0; i < m_numModels; i++) { | |
lexicalMapJoint::iterator joint_s = tables[i]->joint.find( wordS ); | |
if (joint_s == tables[i]->joint.end()) count[i] = 0.0; | |
else { | |
lexicalMap::iterator joint_t = joint_s->second.find( wordT ); | |
if (joint_t == joint_s->second.end()) count[i] = 0.0; | |
else count[i] = joint_t->second; | |
} | |
} | |
} | |
void PhraseDictionaryMultiModelCounts::FillLexicalCountsMarginal(Word &wordS, vector<float> &count, const vector<lexicalTable*> &tables) const | |
{ | |
for (size_t i=0; i < m_numModels; i++) { | |
lexicalMap::iterator marginal_s = tables[i]->marginal.find( wordS ); | |
if (marginal_s == tables[i]->marginal.end()) count[i] = 0.0; | |
else count[i] = marginal_s->second; | |
} | |
} | |
void PhraseDictionaryMultiModelCounts::LoadLexicalTable( string &fileName, lexicalTable* ltable) | |
{ | |
cerr << "Loading lexical translation table from " << fileName; | |
ifstream inFile; | |
inFile.open(fileName.c_str()); | |
if (inFile.fail()) { | |
cerr << " - ERROR: could not open file\n"; | |
exit(1); | |
} | |
istream *inFileP = &inFile; | |
int i=0; | |
string line; | |
while(getline(*inFileP, line)) { | |
i++; | |
if (i%100000 == 0) cerr << "." << flush; | |
const vector<string> token = util::tokenize( line ); | |
if (token.size() != 4) { | |
cerr << "line " << i << " in " << fileName | |
<< " has wrong number of tokens, skipping:\n" | |
<< token.size() << " " << token[0] << " " << line << endl; | |
continue; | |
} | |
double joint = atof( token[2].c_str() ); | |
double marginal = atof( token[3].c_str() ); | |
Word wordT, wordS; | |
wordT.CreateFromString(Output, m_output, token[0], false); | |
wordS.CreateFromString(Input, m_input, token[1], false); | |
ltable->joint[ wordS ][ wordT ] = joint; | |
ltable->marginal[ wordS ] = marginal; | |
} | |
cerr << endl; | |
} | |
vector<float> PhraseDictionaryMultiModelCounts::MinimizePerplexity(vector<pair<string, string> > &phrase_pair_vector) | |
{ | |
map<pair<string, string>, size_t> phrase_pair_map; | |
for ( vector<pair<string, string> >::const_iterator iter = phrase_pair_vector.begin(); iter != phrase_pair_vector.end(); ++iter ) { | |
phrase_pair_map[*iter] += 1; | |
} | |
vector<multiModelCountsStatsOptimization*> optimizerStats; | |
for ( map<pair<string, string>, size_t>::iterator iter = phrase_pair_map.begin(); iter != phrase_pair_map.end(); ++iter ) { | |
pair<string, string> phrase_pair = iter->first; | |
string source_string = phrase_pair.first; | |
string target_string = phrase_pair.second; | |
vector<float> fs(m_numModels); | |
map<string,multiModelCountsStats*>* allStats = new(map<string,multiModelCountsStats*>); | |
Phrase sourcePhrase(0); | |
sourcePhrase.CreateFromString(Input, m_input, source_string, NULL); | |
CollectSufficientStats(sourcePhrase, fs, allStats); //optimization potential: only call this once per source phrase | |
//phrase pair not found; leave cache empty | |
if (allStats->find(target_string) == allStats->end()) { | |
RemoveAllInMap(*allStats); | |
delete allStats; | |
continue; | |
} | |
multiModelCountsStatsOptimization * targetStats = new multiModelCountsStatsOptimization(); | |
targetStats->targetPhrase = new TargetPhrase(*(*allStats)[target_string]->targetPhrase); | |
targetStats->fs = fs; | |
targetStats->fst = (*allStats)[target_string]->fst; | |
targetStats->ft = (*allStats)[target_string]->ft; | |
targetStats->f = iter->second; | |
try { | |
pair<vector< set<size_t> >, vector< set<size_t> > > alignment = GetAlignmentsForLexWeights(sourcePhrase, static_cast<const Phrase&>(*targetStats->targetPhrase), targetStats->targetPhrase->GetAlignTerm()); | |
targetStats->lexCachee2f = CacheLexicalStats(static_cast<const Phrase&>(*targetStats->targetPhrase), sourcePhrase, alignment.second, m_lexTable_e2f, false ); | |
targetStats->lexCachef2e = CacheLexicalStats(sourcePhrase, static_cast<const Phrase&>(*targetStats->targetPhrase), alignment.first, m_lexTable_f2e, true ); | |
optimizerStats.push_back(targetStats); | |
} catch (AlignmentException& e) {} | |
RemoveAllInMap(*allStats); | |
delete allStats; | |
} | |
Sentence sentence; | |
CleanUpAfterSentenceProcessing(sentence); // free memory used by compact phrase tables | |
vector<float> ret (m_numModels*4); | |
for (size_t iFeature=0; iFeature < 4; iFeature++) { | |
CrossEntropyCounts * ObjectiveFunction = new CrossEntropyCounts(optimizerStats, this, iFeature); | |
vector<float> weight_vector = Optimize(ObjectiveFunction, m_numModels); | |
if (m_mode == "interpolate") { | |
weight_vector = normalizeWeights(weight_vector); | |
} else if (m_mode == "instance_weighting") { | |
float first_value = weight_vector[0]; | |
for (size_t i=0; i < m_numModels; i++) { | |
weight_vector[i] = weight_vector[i]/first_value; | |
} | |
} | |
cerr << "Weight vector for feature " << iFeature << ": "; | |
for (size_t i=0; i < m_numModels; i++) { | |
ret[(iFeature*m_numModels)+i] = weight_vector[i]; | |
cerr << weight_vector[i] << " "; | |
} | |
cerr << endl; | |
delete ObjectiveFunction; | |
} | |
RemoveAllInColl(optimizerStats); | |
return ret; | |
} | |
double CrossEntropyCounts::operator() ( const dlib::matrix<double,0,1>& arg) const | |
{ | |
double total = 0.0; | |
double n = 0.0; | |
std::vector<float> weight_vector (m_model->m_numModels); | |
for (int i=0; i < arg.nr(); i++) { | |
weight_vector[i] = arg(i); | |
} | |
if (m_model->m_mode == "interpolate") { | |
weight_vector = m_model->normalizeWeights(weight_vector); | |
} | |
for ( std::vector<multiModelCountsStatsOptimization*>::const_iterator iter = m_optimizerStats.begin(); iter != m_optimizerStats.end(); ++iter ) { | |
multiModelCountsStatsOptimization* statistics = *iter; | |
size_t f = statistics->f; | |
double score; | |
if (m_iFeature == 0) { | |
score = m_model->m_combineFunction(statistics->fst, statistics->ft, weight_vector); | |
} else if (m_iFeature == 1) { | |
score = m_model->ComputeWeightedLexicalTranslationFromCache(statistics->lexCachee2f, weight_vector); | |
} else if (m_iFeature == 2) { | |
score = m_model->m_combineFunction(statistics->fst, statistics->fs, weight_vector); | |
} else if (m_iFeature == 3) { | |
score = m_model->ComputeWeightedLexicalTranslationFromCache(statistics->lexCachef2e, weight_vector); | |
} else { | |
score = 0; | |
UTIL_THROW(util::Exception, "Trying to optimize feature that I don't know. Aborting"); | |
} | |
total -= (FloorScore(TransformScore(score))/TransformScore(2))*f; | |
n += f; | |
} | |
return total/n; | |
} | |
// calculate weighted probability based on instance weighting of joint counts and marginal counts | |
double InstanceWeighting(vector<float> &joint_counts, vector<float> &marginals, vector<float> &multimodelweights) | |
{ | |
double joint_counts_weighted = inner_product(joint_counts.begin(), joint_counts.end(), multimodelweights.begin(), 0.0); | |
double marginals_weighted = inner_product(marginals.begin(), marginals.end(), multimodelweights.begin(), 0.0); | |
if (marginals_weighted == 0) { | |
return 0; | |
} else { | |
return joint_counts_weighted/marginals_weighted; | |
} | |
} | |
// calculate linear interpolation of relative frequency estimates based on joint count and marginal counts | |
//unused for now; enable in config? | |
double LinearInterpolationFromCounts(vector<float> &joint_counts, vector<float> &marginals, vector<float> &multimodelweights) | |
{ | |
vector<float> p(marginals.size()); | |
for (size_t i=0; i < marginals.size(); i++) { | |
if (marginals[i] != 0) { | |
p[i] = joint_counts[i]/marginals[i]; | |
} | |
} | |
double p_weighted = inner_product(p.begin(), p.end(), multimodelweights.begin(), 0.0); | |
return p_weighted; | |
} | |
} //namespace | |