sakharamg's picture
Uploading all files
158b61b
/*
* KENLMBatch.cpp
*
* Created on: 4 Nov 2015
* Author: hieu
*/
#include <boost/foreach.hpp>
#include <sstream>
#include <vector>
#ifdef _linux
#include <pthread.h>
#include <unistd.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include "KENLMBatch.h"
#include "../Phrase.h"
#include "../Scores.h"
#include "../System.h"
#include "../PhraseBased/Hypothesis.h"
#include "../PhraseBased/Manager.h"
#include "../PhraseBased/TargetPhraseImpl.h"
#include "lm/state.hh"
#include "lm/left.hh"
#include "util/exception.hh"
#include "util/tokenize_piece.hh"
#include "util/string_stream.hh"
#include "../legacy/FactorCollection.h"
using namespace std;
namespace Moses2
{
struct KenLMState: public FFState {
lm::ngram::State state;
virtual size_t hash() const {
size_t ret = hash_value(state);
return ret;
}
virtual bool operator==(const FFState& o) const {
const KenLMState &other = static_cast<const KenLMState &>(o);
bool ret = state == other.state;
return ret;
}
virtual std::string ToString() const {
stringstream ss;
for (size_t i = 0; i < state.Length(); ++i) {
ss << state.words[i] << " ";
}
return ss.str();
}
};
/////////////////////////////////////////////////////////////////
class MappingBuilder: public lm::EnumerateVocab
{
public:
MappingBuilder(FactorCollection &factorCollection, System &system,
std::vector<lm::WordIndex> &mapping) :
m_factorCollection(factorCollection), m_system(system), m_mapping(mapping) {
}
void Add(lm::WordIndex index, const StringPiece &str) {
std::size_t factorId = m_factorCollection.AddFactor(str, m_system, false)->GetId();
if (m_mapping.size() <= factorId) {
// 0 is <unk> :-)
m_mapping.resize(factorId + 1);
}
m_mapping[factorId] = index;
}
private:
FactorCollection &m_factorCollection;
std::vector<lm::WordIndex> &m_mapping;
System &m_system;
};
/////////////////////////////////////////////////////////////////
KENLMBatch::KENLMBatch(size_t startInd, const std::string &line)
:StatefulFeatureFunction(startInd, line)
,m_numHypos(0)
{
cerr << "KENLMBatch::KENLMBatch" << endl;
ReadParameters();
}
KENLMBatch::~KENLMBatch()
{
// TODO Auto-generated destructor stub
}
void KENLMBatch::Load(System &system)
{
cerr << "KENLMBatch::Load" << endl;
FactorCollection &fc = system.GetVocab();
m_bos = fc.AddFactor(BOS_, system, false);
m_eos = fc.AddFactor(EOS_, system, false);
lm::ngram::Config config;
config.messages = NULL;
FactorCollection &collection = system.GetVocab();
MappingBuilder builder(collection, system, m_lmIdLookup);
config.enumerate_vocab = &builder;
config.load_method = m_load_method;
m_ngram.reset(new Model(m_path.c_str(), config));
}
FFState* KENLMBatch::BlankState(MemPool &pool, const System &sys) const
{
KenLMState *ret = new (pool.Allocate<KenLMState>()) KenLMState();
return ret;
}
//! return the state associated with the empty hypothesis for a given sentence
void KENLMBatch::EmptyHypothesisState(FFState &state, const ManagerBase &mgr,
const InputType &input, const Hypothesis &hypo) const
{
KenLMState &stateCast = static_cast<KenLMState&>(state);
stateCast.state = m_ngram->BeginSentenceState();
}
void KENLMBatch::EvaluateInIsolation(MemPool &pool, const System &system,
const Phrase<Moses2::Word> &source, const TargetPhraseImpl &targetPhrase, Scores &scores,
SCORE &estimatedScore) const
{
// contains factors used by this LM
float fullScore, nGramScore;
size_t oovCount;
CalcScore(targetPhrase, fullScore, nGramScore, oovCount);
float estimateScore = fullScore - nGramScore;
bool GetLMEnableOOVFeature = false;
if (GetLMEnableOOVFeature) {
float scoresVec[2], estimateScoresVec[2];
scoresVec[0] = nGramScore;
scoresVec[1] = oovCount;
scores.PlusEquals(system, *this, scoresVec);
estimateScoresVec[0] = estimateScore;
estimateScoresVec[1] = 0;
SCORE weightedScore = Scores::CalcWeightedScore(system, *this,
estimateScoresVec);
estimatedScore += weightedScore;
} else {
scores.PlusEquals(system, *this, nGramScore);
SCORE weightedScore = Scores::CalcWeightedScore(system, *this,
estimateScore);
estimatedScore += weightedScore;
}
}
void KENLMBatch::EvaluateInIsolation(MemPool &pool, const System &system, const Phrase<SCFG::Word> &source,
const TargetPhrase<SCFG::Word> &targetPhrase, Scores &scores,
SCORE &estimatedScore) const
{
}
void KENLMBatch::EvaluateWhenApplied(const ManagerBase &mgr,
const Hypothesis &hypo, const FFState &prevState, Scores &scores,
FFState &state) const
{
KenLMState &stateCast = static_cast<KenLMState&>(state);
const System &system = mgr.system;
const lm::ngram::State &in_state =
static_cast<const KenLMState&>(prevState).state;
if (!hypo.GetTargetPhrase().GetSize()) {
stateCast.state = in_state;
return;
}
const std::size_t begin = hypo.GetCurrTargetWordsRange().GetStartPos();
//[begin, end) in STL-like fashion.
const std::size_t end = hypo.GetCurrTargetWordsRange().GetEndPos() + 1;
const std::size_t adjust_end = std::min(end, begin + m_ngram->Order() - 1);
std::size_t position = begin;
Model::State aux_state;
Model::State *state0 = &stateCast.state, *state1 = &aux_state;
float score = m_ngram->Score(in_state, TranslateID(hypo.GetWord(position)),
*state0);
++position;
for (; position < adjust_end; ++position) {
score += m_ngram->Score(*state0, TranslateID(hypo.GetWord(position)),
*state1);
std::swap(state0, state1);
}
if (hypo.GetBitmap().IsComplete()) {
// Score end of sentence.
std::vector<lm::WordIndex> indices(m_ngram->Order() - 1);
const lm::WordIndex *last = LastIDs(hypo, &indices.front());
score += m_ngram->FullScoreForgotState(&indices.front(), last,
m_ngram->GetVocabulary().EndSentence(), stateCast.state).prob;
} else if (adjust_end < end) {
// Get state after adding a long phrase.
std::vector<lm::WordIndex> indices(m_ngram->Order() - 1);
const lm::WordIndex *last = LastIDs(hypo, &indices.front());
m_ngram->GetState(&indices.front(), last, stateCast.state);
} else if (state0 != &stateCast.state) {
// Short enough phrase that we can just reuse the state.
stateCast.state = *state0;
}
score = TransformLMScore(score);
bool OOVFeatureEnabled = false;
if (OOVFeatureEnabled) {
std::vector<float> scoresVec(2);
scoresVec[0] = score;
scoresVec[1] = 0.0;
scores.PlusEquals(system, *this, scoresVec);
} else {
scores.PlusEquals(system, *this, score);
}
}
void KENLMBatch::CalcScore(const Phrase<Moses2::Word> &phrase, float &fullScore,
float &ngramScore, std::size_t &oovCount) const
{
fullScore = 0;
ngramScore = 0;
oovCount = 0;
if (!phrase.GetSize()) return;
lm::ngram::ChartState discarded_sadly;
lm::ngram::RuleScore<Model> scorer(*m_ngram, discarded_sadly);
size_t position;
if (m_bos == phrase[0][m_factorType]) {
scorer.BeginSentence();
position = 1;
} else {
position = 0;
}
size_t ngramBoundary = m_ngram->Order() - 1;
size_t end_loop = std::min(ngramBoundary, phrase.GetSize());
for (; position < end_loop; ++position) {
const Word &word = phrase[position];
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
if (!index) ++oovCount;
}
float before_boundary = fullScore + scorer.Finish();
for (; position < phrase.GetSize(); ++position) {
const Word &word = phrase[position];
lm::WordIndex index = TranslateID(word);
scorer.Terminal(index);
if (!index) ++oovCount;
}
fullScore += scorer.Finish();
ngramScore = TransformLMScore(fullScore - before_boundary);
fullScore = TransformLMScore(fullScore);
}
// Convert last words of hypothesis into vocab ids, returning an end pointer.
lm::WordIndex *KENLMBatch::LastIDs(const Hypothesis &hypo,
lm::WordIndex *indices) const
{
lm::WordIndex *index = indices;
lm::WordIndex *end = indices + m_ngram->Order() - 1;
int position = hypo.GetCurrTargetWordsRange().GetEndPos();
for (;; ++index, --position) {
if (index == end) return index;
if (position == -1) {
*index = m_ngram->GetVocabulary().BeginSentence();
return index + 1;
}
*index = TranslateID(hypo.GetWord(position));
}
}
void KENLMBatch::SetParameter(const std::string& key,
const std::string& value)
{
//cerr << "key=" << key << " " << value << endl;
if (key == "path") {
m_path = value;
} else if (key == "order") {
// ignore
} else if (key == "factor") {
m_factorType = Scan<FactorType>(value);
} else if (key == "lazyken") {
m_load_method =
boost::lexical_cast<bool>(value) ?
util::LAZY : util::POPULATE_OR_READ;
} else if (key == "load") {
if (value == "lazy") {
m_load_method = util::LAZY;
} else if (value == "populate_or_lazy") {
m_load_method = util::POPULATE_OR_LAZY;
} else if (value == "populate_or_read" || value == "populate") {
m_load_method = util::POPULATE_OR_READ;
} else if (value == "read") {
m_load_method = util::READ;
} else if (value == "parallel_read") {
m_load_method = util::PARALLEL_READ;
} else {
UTIL_THROW2("Unknown KenLM load method " << value);
}
} else {
StatefulFeatureFunction::SetParameter(key, value);
}
//cerr << "SetParameter done" << endl;
}
void KENLMBatch::EvaluateWhenAppliedBatch(
const Batch &batch) const
{
{
// write lock
boost::unique_lock<boost::shared_mutex> lock(m_accessLock);
m_batches.push_back(&batch);
m_numHypos += batch.size();
}
//cerr << "m_numHypos=" << m_numHypos << endl;
if (m_numHypos > 0) {
// process batch
EvaluateWhenAppliedBatch();
m_batches.clear();
m_numHypos = 0;
m_threadNeeded.notify_all();
} else {
boost::mutex::scoped_lock lock(m_mutex);
m_threadNeeded.wait(lock);
}
}
void KENLMBatch::EvaluateWhenAppliedBatch() const
{
BOOST_FOREACH(const Batch *batch, m_batches) {
//cerr << "batch=" << batch->size() << endl;
BOOST_FOREACH(Hypothesis *hypo, *batch) {
hypo->EvaluateWhenApplied(*this);
}
}
}
void KENLMBatch::EvaluateWhenApplied(const SCFG::Manager &mgr,
const SCFG::Hypothesis &hypo, int featureID, Scores &scores,
FFState &state) const
{
UTIL_THROW2("Not implemented");
}
}