NMTKD
/
translation
/tools
/mosesdecoder
/scripts
/analysis
/bootstrap-hypothesis-difference-significance.pl
#!/usr/bin/env perl | |
# | |
# This file is part of moses. Its use is licensed under the GNU Lesser General | |
# Public License version 2.1 or, at your option, any later version. | |
use utf8; | |
############################################### | |
# An implementation of paired bootstrap resampling for testing the statistical | |
# significance of the difference between two systems from (Koehn 2004 @ EMNLP) | |
# | |
# Usage: ./compare-hypotheses-with-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ] | |
# | |
# Author: Mark Fishel, [email protected] | |
# | |
# 22.10.2008: altered algorithm according to (Riezler and Maxwell 2005 @ MTSE'05), now computes p-value | |
# | |
# 23.01.2010: added NIST p-value and interval computation | |
############################################### | |
use warnings; | |
use strict; | |
#constants | |
my $TIMES_TO_REPEAT_SUBSAMPLING = 1000; | |
my $SUBSAMPLE_SIZE = 0; # if 0 then subsample size is equal to the whole set | |
my $MAX_NGRAMS = 4; | |
my $IO_ENCODING = "utf8"; # can be replaced with e.g. "encoding(iso-8859-13)" or alike | |
#checking cmdline argument consistency | |
if (@ARGV < 3) { | |
print STDERR "Usage: ./bootstrap-hypothesis-difference-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ]\n"; | |
unless ($ARGV[0] =~ /^(--help|-help|-h|-\?|\/\?|--usage|-usage)$/) { | |
die("\nERROR: not enough arguments"); | |
} | |
exit 1; | |
} | |
print STDERR "reading data; " . `date`; | |
#read all data | |
my $data = readAllData(@ARGV); | |
my $verbose = $ARGV[3]; | |
#calculate each sentence's contribution to BP and ngram precision | |
print STDERR "performing preliminary calculations (hypothesis 1); " . `date`; | |
preEvalHypo($data, "hyp1"); | |
print STDERR "performing preliminary calculations (hypothesis 2); " . `date`; | |
preEvalHypo($data, "hyp2"); | |
#start comparing | |
print STDERR "comparing hypotheses -- this may take some time; " . `date`; | |
bootstrap_report("BLEU", \&getBleu); | |
bootstrap_report("NIST", \&getNist); | |
##### | |
# | |
##### | |
sub bootstrap_report { | |
my $title = shift; | |
my $proc = shift; | |
my ($subSampleScoreDiffArr, $subSampleScore1Arr, $subSampleScore2Arr) = bootstrap_pass($proc); | |
my $realScore1 = &$proc($data->{refs}, $data->{hyp1}); | |
my $realScore2 = &$proc($data->{refs}, $data->{hyp2}); | |
my $scorePValue = bootstrap_pvalue($subSampleScoreDiffArr, $realScore1, $realScore2); | |
my ($scoreAvg1, $scoreVar1) = bootstrap_interval($subSampleScore1Arr); | |
my ($scoreAvg2, $scoreVar2) = bootstrap_interval($subSampleScore2Arr); | |
print "\n---=== $title score ===---\n"; | |
print "actual score of hypothesis 1: $realScore1\n"; | |
print "95% confidence interval for hypothesis 1 score: $scoreAvg1 +- $scoreVar1\n-----\n"; | |
print "actual score of hypothesis 1: $realScore2\n"; | |
print "95% confidence interval for hypothesis 2 score: $scoreAvg2 +- $scoreVar2\n-----\n"; | |
print "Assuming that essentially the same system generated the two hypothesis translations (null-hypothesis),\n"; | |
print "the probability of actually getting them (p-value) is: $scorePValue.\n"; | |
} | |
##### | |
# | |
##### | |
sub bootstrap_pass { | |
my $scoreFunc = shift; | |
my @subSampleDiffArr; | |
my @subSample1Arr; | |
my @subSample2Arr; | |
#applying sampling | |
for my $idx (1..$TIMES_TO_REPEAT_SUBSAMPLING) { | |
my $subSampleIndices = drawWithReplacement($data->{size}, ($SUBSAMPLE_SIZE? $SUBSAMPLE_SIZE: $data->{size})); | |
my $score1 = &$scoreFunc($data->{refs}, $data->{hyp1}, $subSampleIndices); | |
my $score2 = &$scoreFunc($data->{refs}, $data->{hyp2}, $subSampleIndices); | |
push @subSampleDiffArr, abs($score2 - $score1); | |
push @subSample1Arr, $score1; | |
push @subSample2Arr, $score2; | |
if ($idx % 10 == 0) { | |
print STDERR "."; | |
} | |
if ($idx % 100 == 0) { | |
print STDERR "$idx\n"; | |
} | |
} | |
if ($TIMES_TO_REPEAT_SUBSAMPLING % 100 != 0) { | |
print STDERR ".$TIMES_TO_REPEAT_SUBSAMPLING\n"; | |
} | |
return (\@subSampleDiffArr, \@subSample1Arr, \@subSample2Arr); | |
} | |
##### | |
# | |
##### | |
sub bootstrap_pvalue { | |
my $subSampleDiffArr = shift; | |
my $realScore1 = shift; | |
my $realScore2 = shift; | |
my $realDiff = abs($realScore2 - $realScore1); | |
#get subsample difference mean | |
my $averageSubSampleDiff = 0; | |
for my $subSampleDiff (@$subSampleDiffArr) { | |
$averageSubSampleDiff += $subSampleDiff; | |
} | |
$averageSubSampleDiff /= $TIMES_TO_REPEAT_SUBSAMPLING; | |
#calculating p-value | |
my $count = 0; | |
my $realScoreDiff = abs($realScore2 - $realScore1); | |
for my $subSampleDiff (@$subSampleDiffArr) { | |
if ($subSampleDiff - $averageSubSampleDiff >= $realDiff) { | |
$count++; | |
} | |
} | |
return $count / $TIMES_TO_REPEAT_SUBSAMPLING; | |
} | |
##### | |
# | |
##### | |
sub bootstrap_interval { | |
my $subSampleArr = shift; | |
my @sorted = sort @$subSampleArr; | |
my $lowerIdx = int($TIMES_TO_REPEAT_SUBSAMPLING / 40); | |
my $higherIdx = $TIMES_TO_REPEAT_SUBSAMPLING - $lowerIdx - 1; | |
my $lower = $sorted[$lowerIdx]; | |
my $higher = $sorted[$higherIdx]; | |
my $diff = $higher - $lower; | |
return ($lower + 0.5 * $diff, 0.5 * $diff); | |
} | |
##### | |
# read 2 hyp and 1 to \infty ref data files | |
##### | |
sub readAllData { | |
my ($hypFile1, $hypFile2, @refFiles) = @_; | |
my %result; | |
#reading hypotheses and checking for matching sizes | |
$result{hyp1} = readData($hypFile1); | |
$result{size} = scalar @{$result{hyp1}}; | |
$result{hyp2} = readData($hypFile2); | |
unless (scalar @{$result{hyp2}} == $result{size}) { | |
die ("ERROR: sizes of hypothesis sets 1 and 2 don't match"); | |
} | |
#reading reference(s) and checking for matching sizes | |
$result{refs} = []; | |
$result{ngramCounts} = { }; | |
my $i = 0; | |
for my $refFile (@refFiles) { | |
$i++; | |
my $refDataX = readData($refFile); | |
unless (scalar @$refDataX == $result{size}) { | |
die ("ERROR: ref set $i size doesn't match the size of hyp sets"); | |
} | |
updateCounts($result{ngramCounts}, $refDataX); | |
push @{$result{refs}}, $refDataX; | |
} | |
return \%result; | |
} | |
##### | |
# | |
##### | |
sub updateCounts { | |
my ($countHash, $refData) = @_; | |
for my $snt(@$refData) { | |
my $size = scalar @{$snt->{words}}; | |
$countHash->{""} += $size; | |
for my $order(1..$MAX_NGRAMS) { | |
my $ngram; | |
for my $i (0..($size-$order)) { | |
$ngram = join(" ", @{$snt->{words}}[$i..($i + $order - 1)]); | |
$countHash->{$ngram}++; | |
} | |
} | |
} | |
} | |
##### | |
# | |
##### | |
sub ngramInfo { | |
my ($data, $ngram) = @_; | |
my @nwords = split(/ /, $ngram); | |
pop @nwords; | |
my $smallGram = join(" ", @nwords); | |
return log($data->{ngramCounts}->{$smallGram} / $data->{ngramCounts}->{$ngram}) / log(2.0); | |
} | |
##### | |
# read sentences from file | |
##### | |
sub readData { | |
my $file = shift; | |
my @result; | |
open (FILE, $file) or die ("Failed to open `$file' for reading"); | |
binmode (FILE, ":$IO_ENCODING"); | |
while (<FILE>) { | |
push @result, { words => [split(/\s+/, $_)] }; | |
} | |
close (FILE); | |
return \@result; | |
} | |
##### | |
# calculate each sentence's contribution to the ngram precision and brevity penalty | |
##### | |
sub preEvalHypo { | |
my $data = shift; | |
my $hypId = shift; | |
for my $lineIdx (0..($data->{size} - 1)) { | |
preEvalHypoSnt($data, $hypId, $lineIdx); | |
} | |
} | |
##### | |
# | |
##### | |
sub preEvalHypoSnt { | |
my ($data, $hypId, $lineIdx) = @_; | |
my ($correctNgramCounts, $totalNgramCounts); | |
my ($refNgramCounts, $hypNgramCounts); | |
my ($coocNgramInfoSum, $totalNgramAmt); | |
my $hypSnt = $data->{$hypId}->[$lineIdx]; | |
#update total hyp len | |
$hypSnt->{hyplen} = scalar @{$hypSnt->{words}}; | |
#update total ref len with closest current ref len | |
$hypSnt->{reflen} = getClosestLength($data->{refs}, $lineIdx, $hypSnt->{hyplen}); | |
$hypSnt->{avgreflen} = getAvgLength($data->{refs}, $lineIdx); | |
$hypSnt->{correctNgrams} = []; | |
$hypSnt->{totalNgrams} = []; | |
#update ngram precision for each n-gram order | |
for my $order (1..$MAX_NGRAMS) { | |
#hyp ngrams | |
$hypNgramCounts = groupNgrams($hypSnt, $order); | |
#ref ngrams | |
$refNgramCounts = groupNgramsMultiSrc($data->{refs}, $lineIdx, $order); | |
$correctNgramCounts = 0; | |
$totalNgramCounts = 0; | |
$coocNgramInfoSum = 0; | |
$totalNgramAmt = 0; | |
my $coocUpd; | |
#correct, total | |
for my $ngram (keys %$hypNgramCounts) { | |
if (!exists $refNgramCounts->{$ngram}) { | |
$refNgramCounts->{$ngram} = 0; | |
} | |
$coocUpd = min($hypNgramCounts->{$ngram}, $refNgramCounts->{$ngram}); | |
$correctNgramCounts += $coocUpd; | |
$totalNgramCounts += $hypNgramCounts->{$ngram}; | |
if ($coocUpd > 0) { | |
$coocNgramInfoSum += ngramInfo($data, $ngram); | |
} | |
$totalNgramAmt++; | |
} | |
$hypSnt->{correctNgrams}->[$order] = $correctNgramCounts; | |
$hypSnt->{totalNgrams}->[$order] = $totalNgramCounts; | |
$hypSnt->{ngramNistInfoSum}->[$order] = $coocNgramInfoSum; | |
$hypSnt->{ngramNistCount}->[$order] = $totalNgramAmt; | |
} | |
} | |
##### | |
# draw a subsample of size $subSize from set (0..$setSize) with replacement | |
##### | |
sub drawWithReplacement { | |
my ($setSize, $subSize) = @_; | |
my @result; | |
for (1..$subSize) { | |
push @result, int(rand($setSize)); | |
} | |
return \@result; | |
} | |
##### | |
# | |
##### | |
sub getNist { | |
my ($refs, $hyp, $idxs) = @_; | |
#default value for $idxs | |
unless (defined($idxs)) { | |
$idxs = [0..((scalar @$hyp) - 1)]; | |
} | |
#vars | |
my ($hypothesisLength, $referenceLength) = (0, 0); | |
my (@infosum, @totalamt); | |
#gather info from each line | |
for my $lineIdx (@$idxs) { | |
my $hypSnt = $hyp->[$lineIdx]; | |
#update total hyp len | |
$hypothesisLength += $hypSnt->{hyplen}; | |
#update total ref len with closest current ref len | |
$referenceLength += $hypSnt->{avgreflen}; | |
#update ngram precision for each n-gram order | |
for my $order (1..$MAX_NGRAMS) { | |
$infosum[$order] += $hypSnt->{ngramNistInfoSum}->[$order]; | |
$totalamt[$order] += $hypSnt->{ngramNistCount}->[$order]; | |
} | |
} | |
my $toplog = log($hypothesisLength / $referenceLength); | |
my $btmlog = log(2.0/3.0); | |
#compose nist score | |
my $brevityPenalty = ($hypothesisLength > $referenceLength)? 1.0: exp(log(0.5) * $toplog * $toplog / ($btmlog * $btmlog)); | |
my $sum = 0; | |
for my $order (1..$MAX_NGRAMS) { | |
$sum += $infosum[$order]/$totalamt[$order]; | |
} | |
my $result = $sum * $brevityPenalty; | |
return $result; | |
} | |
##### | |
# refs: arrayref of different references, reference = array of lines, line = array of words, word = string | |
# hyp: arrayref of lines of hypothesis translation, line = array of words, word = string | |
# idxs: indices of lines to include; default value - full set (0..size_of_hyp-1) | |
##### | |
sub getBleu { | |
my ($refs, $hyp, $idxs) = @_; | |
#default value for $idxs | |
unless (defined($idxs)) { | |
$idxs = [0..((scalar @$hyp) - 1)]; | |
} | |
#vars | |
my ($hypothesisLength, $referenceLength) = (0, 0); | |
my (@correctNgramCounts, @totalNgramCounts); | |
my ($refNgramCounts, $hypNgramCounts); | |
#gather info from each line | |
for my $lineIdx (@$idxs) { | |
my $hypSnt = $hyp->[$lineIdx]; | |
#update total hyp len | |
$hypothesisLength += $hypSnt->{hyplen}; | |
#update total ref len with closest current ref len | |
$referenceLength += $hypSnt->{reflen}; | |
#update ngram precision for each n-gram order | |
for my $order (1..$MAX_NGRAMS) { | |
$correctNgramCounts[$order] += $hypSnt->{correctNgrams}->[$order]; | |
$totalNgramCounts[$order] += $hypSnt->{totalNgrams}->[$order]; | |
} | |
} | |
#compose bleu score | |
my $brevityPenalty = ($hypothesisLength < $referenceLength)? exp(1 - $referenceLength/$hypothesisLength): 1; | |
my $logsum = 0; | |
for my $order (1..$MAX_NGRAMS) { | |
$logsum += safeLog($correctNgramCounts[$order] / $totalNgramCounts[$order]); | |
} | |
return $brevityPenalty * exp($logsum / $MAX_NGRAMS); | |
} | |
##### | |
# | |
##### | |
sub getAvgLength { | |
my ($refs, $lineIdx) = @_; | |
my $result = 0; | |
my $count = 0; | |
for my $ref (@$refs) { | |
$result += scalar @{$ref->[$lineIdx]->{words}}; | |
$count++; | |
} | |
return $result / $count; | |
} | |
##### | |
# | |
##### | |
sub getClosestLength { | |
my ($refs, $lineIdx, $hypothesisLength) = @_; | |
my $bestDiff = infty(); | |
my $bestLen = infty(); | |
my ($currLen, $currDiff); | |
for my $ref (@$refs) { | |
$currLen = scalar @{$ref->[$lineIdx]->{words}}; | |
$currDiff = abs($currLen - $hypothesisLength); | |
if ($currDiff < $bestDiff or ($currDiff == $bestDiff and $currLen < $bestLen)) { | |
$bestDiff = $currDiff; | |
$bestLen = $currLen; | |
} | |
} | |
return $bestLen; | |
} | |
##### | |
# | |
##### | |
sub groupNgrams { | |
my ($snt, $order) = @_; | |
my %result; | |
my $size = scalar @{$snt->{words}}; | |
my $ngram; | |
for my $i (0..($size-$order)) { | |
$ngram = join(" ", @{$snt->{words}}[$i..($i + $order - 1)]); | |
$result{$ngram}++; | |
} | |
return \%result; | |
} | |
##### | |
# | |
##### | |
sub groupNgramsMultiSrc { | |
my ($refs, $lineIdx, $order) = @_; | |
my %result; | |
for my $ref (@$refs) { | |
my $currNgramCounts = groupNgrams($ref->[$lineIdx], $order); | |
for my $currNgram (keys %$currNgramCounts) { | |
if (!exists $result{$currNgram}) { | |
$result{$currNgram} = 0; | |
} | |
$result{$currNgram} = max($result{$currNgram}, $currNgramCounts->{$currNgram}); | |
} | |
} | |
return \%result; | |
} | |
##### | |
# | |
##### | |
sub safeLog { | |
my $x = shift; | |
return ($x > 0)? log($x): -infty(); | |
} | |
##### | |
# | |
##### | |
sub infty { | |
return 1e6000; | |
} | |
##### | |
# | |
##### | |
sub min { | |
my ($a, $b) = @_; | |
return ($a < $b)? $a: $b; | |
} | |
##### | |
# | |
##### | |
sub max { | |
my ($a, $b) = @_; | |
return ($a > $b)? $a: $b; | |
} | |
sub poww { | |
my ($a, $b) = @_; | |
return exp($b * log($a)); | |
} | |